Abstract:
A display device and a method of fabricating a display device are provided, the display device comprising a first substrate, first and second electrodes on the first substrate and spaced apart from each other, a first insulating layer covering portions of the first and second electrodes, light-emitting elements on the first insulating layer, a first contact electrode on the first electrode and in contact with first end portions of the light-emitting elements, a second insulating layer on the light-emitting elements and covering a first end portion of the first contact electrode, and a second contact electrode between the second insulating layer and the second electrode, and in contact with second end portions of the light-emitting elements.
Abstract:
A display device includes a display panel including a display area in which pixels are placed to display an image, and a non-display area located around the display area; and a cover window including a light blocking area overlapping the non-display area of the display panel in a thickness direction of the display panel, and a through hole penetrating through the light blocking area, wherein the display panel further includes a first power supply line located in the non-display area to apply a first power supply voltage, and wherein the first power supply line does not overlap the through hole in the thickness direction of the display panel.
Abstract:
A display device includes: a substrate; a first insulating layer disposed on the substrate; a wire disposed on the first insulating layer; and a second insulating layer disposed on the wire, wherein the first insulating layer, the wire, and the second insulating layer extend from an edge of the substrate to overlap a side surface of the substrate.
Abstract:
A display device includes a substrate including a display area including pixels, and a light transmissive area including a portion in the display area, and signal lines disposed in the display area and electrically connected with the pixels, where the signal lines include a first signal line on a first side, a second signal line on a second side and arranged with the first signal line in a first direction, and a third signal line on a third side, and the third signal line is arranged with the first signal line and the second signal line in a second direction, the first and second signal lines are insulated from each other in the display area, and a length of the first signal line is longer than a length of the second signal line in the first direction.
Abstract:
A display device includes a display panel including a display area in which an image is displayed, and a light unit that includes: a light guide plate including a light receiving surface and a light emitting surface; a light source spaced apart from the light receiving surface while facing the light receiving surface and overlapping the display area; and a light diffusion member extending between the light receiving surface and the light source. The light diffusion member includes at least one of a first pattern formed on a surface of the light diffusion member facing the light emitting surface, and a second pattern formed on another surface of the light diffusion member, thereby implementing uniform brightness across the whole surface of the display panel.
Abstract:
A display device including a substrate including a display area and a non-display area, a plurality of signal lines disposed in the display area and extending along a first direction and from the non-display area to the display area, a connection line extending from the non-display area and electrically connected to a respective signal line of the plurality of signal lines in the non-display area, and an initialization voltage line extending in a second direction intersecting the first direction, wherein the connection line overlaps the initialization voltage line in a thickness direction of the display device.
Abstract:
A wavelength converter and a liquid crystal display having the same, the wavelength converter including a first pattern that converts a wavelength of light into red light, and a second pattern that converts a wavelength of light into green light. The first pattern and the second pattern are alternately disposed, and an optical path length La of each of the first pattern and the second pattern is given by Equation (1): La=(λa/2)×m, wherein La is an optical length of an a-th pattern, λa is a wavelength of light converted by the a-th pattern, a is one or two, and m is a natural number.
Abstract:
A light unit for a display includes: a light guide plate, a plurality of light sources facing a side of the light guide plate and spaced apart from the light guide plate; and a buffering member between the light guide plate and the light source. The buffering member includes: spacing parts positioned respectively between adjacent light sources and contacting the light guide plate, and a blocking part connecting the plurality of spaced parts to each other and facing a side direction of each light source.
Abstract:
A display device includes a substrate including a display area including pixels, and a light transmissive area including a portion in the display area, and signal lines disposed in the display area and electrically connected with the pixels, where the signal lines include a first signal line on a first side, a second signal line on a second side and arranged with the first signal line in a first direction, and a third signal line on a third side, and the third signal line is arranged with the first signal line and the second signal line in a second direction, the first and second signal lines are insulated from each other in the display area, and a length of the third signal line is longer than a length of the second signal line in the first direction.
Abstract:
A display device includes a substrate; a first electrode and a second electrode disposed in an emission area and a sub-region and spaced apart from each other in a first direction; a first insulating layer disposed on the first electrode and the second electrode; light emitting elements disposed on the first insulating layer in the emission area, and including ends disposed on the first and second electrodes, respectively; and a second insulating layer disposed on the first insulating layer. The second insulating layer includes a fixing pattern; a support pattern portion; and a connection portion electrically connecting the fixing pattern and the support pattern portion, and the fixing pattern includes a first region that contacts an outer surface of the light emitting elements and a second region that does not contact the outer surface of the light emitting elements.