Abstract:
A touch sensor device includes first touch electrodes and second touch electrodes disposed on a substrate, and a polymer layer including a polymer material disposed on the first and second touch electrodes and on a substantially entire area of the substrate, in which the polymer layer includes conductive and non-conductive regions.
Abstract:
A touch sensor is disclosed to include a first mesh touch electrode formed in a first direction and transmitting a first touch signal, a first supplementary mesh touch electrode formed on the same layer as the first mesh touch electrode, an insulating layer covering the first mesh touch electrode and the first supplementary mesh touch electrode and having a contact cutout, a second mesh touch electrode formed in a second direction crossing the first direction and transmitting a second touch signal, and a second supplementary mesh touch electrode formed on the same layer as the second mesh touch electrode. In this touch sensor, the first mesh touch electrode is connected to the second supplementary mesh touch electrode through the contact cutout and the second mesh touch electrode is connected to the first supplementary mesh touch electrode through the contact cutout.
Abstract:
A touch panel and method of manufacturing the same are disclosed. In one aspect, the touch panel includes a substrate, a first touch electrode line formed over the substrate and including a plurality of first touch electrodes which are electrically connected to each other, and a second touch electrode line formed to cross the first touch electrode line and being electrically insulated therefrom. The second touch electrode line can include a plurality of second touch electrodes which are electrically connected to each other. The touch panel can also include a plurality of connecting wires respectively connected to the first and second touch electrode lines. At least one of the first touch electrode line, the second touch electrode line, and the connecting wires can include at least one photosensitive conductive layer having a metal nanowire.
Abstract:
Provided is a display device including: a display panel configured to generate an image; a touch screen panel formed on the display panel; and a window formed on the touch screen panel and extending over a side edge of the touch screen panel to facilitate a covering and sealing of the touch screen panel. According to the present invention, by providing a display device having a laminated structure in which the edge of the touch screen panel is sealed so as to prevent moisture from permeating from the outside, occurrence of product defects may be prevented.
Abstract:
A touch panel, including a phase retardation film; a wire grid polarizer on the phase retardation film; and a touch sensor unit on the phase retardation film, the touch sensor unit being adjacent to the wire grid polarizer.
Abstract:
A touch screen panel includes a sensing electrode area, a pad area, and a peripheral wiring area. The sensing electrode area includes first sensing electrodes and second sensing electrodes on a touch substrate and spaced from each other. The peripheral wiring area connects the sensing electrode area to the pad area. Each of the first sensing electrodes includes a first sensing metal layer on the touch substrate, a sensing insulation layer on the first sensing metal layer, and a second sensing metal layer on the sensing insulation layer and having a mesh structure. The second sensing metal layer is thicker than the first sensing metal layer.
Abstract:
A touch panel and a method for manufacturing the same, where the touch panel includes: a substrate; a first sensing electrode pattern disposed on the insulation substrate, including a plurality of first sensing electrodes, a first connection to connect the plurality of first sensing electrodes in a first direction, and a plurality of floating electrodes; and a second sensing electrode pattern including a plurality of second sensing electrodes insulated from the plurality of floating electrodes and overlapping the plurality of floating electrodes and a second connection to connect the plurality of second sensing electrodes in a second direction perpendicular to the first direction. The first sensing electrode pattern includes nanowire. The second sensing electrode pattern includes a transparent conductive material.