Abstract:
A flight control system for an aircraft includes a flight control computer operatively interconnected with a main rotor system and a translational thrust system of the aircraft. A selectively enabled integrated target and flight control system arranged in communication with the flight control computer. The integrated target flight and control system is configured to control pitch attitude and heading of the aircraft. When the integrated target and flight control system is enabled, at least partial operation of the aircraft is controlled in response to a pilot input via the flight control computer.
Abstract:
A method for determining a center-of-gravity of an aircraft in three dimensions includes determining a first center-of-gravity location for an aircraft in a first plane defined by a first axis and a second axis. The method includes positioning the aircraft in a tilted position by rotating the aircraft and determining a second center-of-gravity location for the aircraft in the first plane in the tilted position. The method includes comparing the first center-of-gravity location to the second center-of-gravity location to determine a component of the first center-of-gravity location along a third axis defined out-of-plane from the first plane to determine a three-dimensional center-of-gravity of the aircraft.
Abstract:
A vehicle is provided and includes a wing having opposite surfaces and opposite sides and first and second engines disposed to drive wing movement and being respectively supported asymmetrically on the opposite surfaces and at the opposite sides of the wing.
Abstract:
A system and method for controlling a tail-sitter aircraft, includes determining a mode of operation for the aircraft; operating each of a large turbine engine and a small turbine engine to provide total aircraft power during hover or high-power mode of operation; and selectively providing aircraft power from the small turbine engine to a plurality of rotors during a long-range endurance cruise mode of operation.
Abstract:
A tail sitter aircraft is capable of forward flight and hover operations. The tail sitter aircraft includes a wing and first and second prop-nacelles supportively disposed on the wing. Each of the first and second prop-nacelles includes an articulable rotor, which is rotatable about variable rotational axes and which includes blades that are collectively and cyclically controllable in both forward flight and hover regimes.
Abstract:
A vertical take-off and landing (VTOL) aircraft is provided and includes a fuselage, wings extending outwardly from opposite sides of the fuselage, nacelles supportively disposed on the wings and reversely oriented, axial flow engines disposed in each of the nacelles to generate mechanical energy for driving lift and thrust generating prop-rotor rotations.
Abstract:
An aircraft is provided and includes a propeller to generate aircraft thrust, a prop-nacelle housing and supporting the propeller, a wing supporting the prop nacelle and including first coupling elements. The first coupling elements are each configured to selectively couple with a second set of coupling elements associated with a group of interchangeable fuselages.
Abstract:
An aircraft is provided and includes a mission vehicle configured to follow vertical take-off and landing (VTOL) operations and to execute forward flight, hover/loiter and landing operations and a launch vehicle configured to drive the mission vehicle through at least vertical take-off (VTO) operations. The launch vehicle is umbilically coupled to the mission vehicle during the VTO operations and releasable from the mission vehicle thereafter.
Abstract:
An aircraft is provided and includes a single sensor and wings extending outwardly in opposite directions from a fuselage. Each wing includes a main section, an engine section supported on the main section and tail surfaces extending transversely relative to the main section. The single sensor is mountable to one of the tail surfaces with a field of view (FOV) representable as a spherical wedge having a dihedral angle exceeding 180°.
Abstract:
A retractable landing gear system for a vertical takeoff and landing (VTOL) aircraft includes a rotational strut rotatably coupled to a fuselage of the VTOL aircraft. The rotational strut includes a first end, a second end, and an intermediate portion extending therebetween. A drag strut includes a first end portion pivotally connected to the rotational strut and a second end portion. A locking link includes a first end section pivotally connected relative to the fuselage, a second end section pivotally connected to the drag strut and an intermediate section having a hinge element. A retraction system is operatively connected to the rotational strut and the locking link. The retraction system is operable to pivot the drag strut about a first axis and rotate the rotational strut about a second axis that is distinct from the first axis.