Abstract:
Methods, systems, and devices for wireless communications are described. A configuration for a reference signal used to determine a non-linear behavior of transmission components at a transmitting device may be determined. The configuration for the reference signal may be determined based on signaling transmitted by the transmitting device, signaling transmitted by a device that receives the reference signal, or both. Additionally, or alternatively, the configuration for the reference signal may be determined based on a configuration of other signals transmitted by the transmitting device prior to or concurrently with the transmission of the reference signal. The determined configuration may be used to generate and transmit the reference signal or to determine a configuration of a received reference signal. In both cases, a non-linear response of transmission components at the transmitting device may be determined based on the reference signal.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for a UE to flexibly indicate a preferred precoding resource block group (PRG) size to a base station (e.g., an eNB).
Abstract:
Systems and techniques are disclosed to enhance the efficiency of available bandwidth between UEs and base stations. A UE transmits a sounding reference signal (SRS) to the base station. The base station characterizes the uplink channel based on the SRS received and, using reciprocity, applies the channel characterization for the downlink channel. As part of applying the channel information, the base station forms the beam to the UE based on the uplink channel information obtained from the SRS. The UE may include an array of antennas, each UE transmitting a different SRS that the base station receives and uses to characterize the downlink. Multiple UEs (or a single UE with multiple antennas) transmit SRS at the same time and frequency allocation (non-orthogonal), but with each sending its own unique SRS. Further, multiple UEs (or a single UE with multiple antennas) may send their SRS at unique time/frequency allocations (orthogonal).
Abstract:
Systems and methods which are adapted to provide selective transport accelerator operation are disclosed. In operation according to embodiments, one or more functions of transport accelerator operation is selectively bypassed or not based upon particular criteria. Transport accelerator control logic may obtain one or more acceleration selection attributes and, based on the one or more acceleration selection attributes, selectively invoke first functionality of transport accelerator logic of a client device to obtain the content from the content server or bypassing the first functionality of the transport accelerator logic of the client device to obtain the content from the content server. The first functionality may comprise subdividing the user agent's request for content into a plurality of chunk requests for requesting chunks of the content from the content server to provide accelerated delivery of the content to the client device.
Abstract:
This disclosure provides methods, devices and systems for channel sounding for wireless communications. Some implementations more specifically relate to scheduling sounding reference signal (SRS) resource sets for wireless devices having more than 4 receive (RX) antenna ports. In some implementations, a base station may determine an antenna switching capability of a user equipment (UE). The antenna switching capability indicates a number of RX antenna ports of the UE. The base station schedules a number of SRS resource sets for the UE based at least in part on the number of RX antenna ports in excess of four. For example, the number of RX antenna ports may be equal to 8. As another example, the number of RX antenna ports may be equal to 6. The base station further receives, from the UE, uplink transmissions of one or more SRS resources for each of the scheduled SRS resource sets.
Abstract:
In an aspect, a UE obtains information (e.g., UE-specific information) associated with a set of triggering criteria (e.g., from a server, a serving network, e.g., in conjunction with or separate from a set of neural network functions) for a set of neural network functions, the set of neural network functions configured to facilitate positioning measurement feature processing at the UE, the set of neural network functions being generated dynamically based on machine-learning associated with one or more historical measurement procedures. The UE obtains positioning measurement data associated with a location of the UE, and processes the positioning measurement data into a respective set of positioning measurement features based at least in part upon the positioning measurement data and at least one neural network function from the set of neural network functions that is triggered by at least one triggering criterion from the set of triggering criteria.
Abstract:
Certain aspects of the present disclosure provide techniques for uplink sounding reference signal (SRS) transmission with precoding. A method for wireless communication by a user equipment (UE) includes receiving a SRS configuration that configures one or more SRS resource sets, each resource set including one or more SRS resources, each SRS resource comprising one or more SRS ports. The UE receives a set of precoders via an indicator, the set of precoders including a precoder associated with each SRS resource and determines one or more precoders to apply for one or more SRS transmissions via one or more of the SRS resources.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may train a first set of layers of a neural network based on channel estimates using a set of resources. The UE may generate a set of weights for the first set of layers of the neural network based on the training. The UE may receive, from a first network entity, an indication of an association between a first set of signaling and a second set of signaling based on the first set of layers of the neural network. The UE may receive the second set of signaling from a second network entity and process the second set of signaling using the set of weights for the first set of layers based on the association between the first set of signaling and the second set of signaling.
Abstract:
Certain aspects of the present disclosure generally relate to methods and apparatus for sounding reference signal (SRS) guided downlink channel state information-reference signal (CSI-RS) scan. One example method for wireless communication generally includes determining whether to perform channel measurement and reporting operations for a user-equipment (UE) using a reciprocity-based scheme or a channel state information-reference signal (CSI-RS) based scheme based on a criteria of a cell, and performing the channel measurement and reporting operations based on the determination.
Abstract:
Various embodiments include methods performed in receiver circuitry of a wireless communication device for demodulating wireless transmission waveforms to reconstruct data tones, which may include receiving, from a transmitter, wireless transmission waveforms that includes peak reduction tones (PRTs) that were inserted by a PRT neural network in the transmitter, and demodulating the received wireless transmission waveforms using a decoder neural network that has been trained based on outputs of the transmitter to output a reconstruction of the data tones. Further embodiments include exchanging information between the transmitter and receiver circuitry to coordinate the PRT neural network used for inserting PRTs in the transmitting wireless communication device and the decoder neural network used in the receiving wireless communication device for demodulating transmission waveforms received from the transmitting wireless communication device.