Abstract:
An apparatus for capturing a signal of interest, e.g., PSS and/or SSS, captures data transmitted by a first RAT by obtaining access to a receive chain for a second RAT during a measurement gap for the first RAT. The signal of interest transmitted by the first RAT is captured during the measurement gap using the receive chain for the second RAT. Access to a receive chain for the second RAT may be obtained in any one of several ways. For example, access may be obtained by 1) requesting receive chain access for the second RAT for LTE measurements through a virtual flow, 2) entering into a power save mode, 3) tuning to a non-operating channel, 4) setting network allocation vector (NAV) at or above a threshold value, or 5) entering a measurement mode during which the receive chain for the second RAT is prevented from performing WLAN operations.
Abstract:
An apparatus for wireless communication obtains a first metric of a cell based on signals received by a WWAN radio tuned to a common frequency, and a second metric of the cell based on signals received by a WLAN radio tuned to the common frequency. The apparatus determines a calibration factor based on the first and second metrics, and performs cell search and cell measurement based on the calibration factor and signals received by the WLAN radio tuned to a target frequency. The common frequency may be a serving frequency of the WWAN, in which case the first and second metrics are one of frequency or power metrics and the calibration factor is one of a frequency offset and a power offset. The common frequency may also be a target frequency for inter-frequency measurements of the WWAN, in which case the calibration factor is based primarily on power measurements.