Abstract:
An electronic device and method receive (for example, from a memory), a grayscale image of a scene of real world captured by a camera of a mobile device. The electronic device and method also receive a color image from which the grayscale image is generated, wherein each color pixel is stored as a tuple of multiple components. The electronic device and method determine a new intensity for at least one grayscale pixel in the grayscale image, based on at least one component of a tuple of a color pixel located in correspondence to the at least one grayscale pixel. The determination may be done conditionally, by checking whether a local variance of intensities is below a predetermined threshold in a subset of grayscale pixels located adjacent to the at least one grayscale pixel, and selecting the component to provide most local variance of intensities.
Abstract:
An electronic device and method use a camera to capture an image of an environment outside followed by identification of regions therein. A subset of the regions is selected, based on attributes of the regions, such as aspect ratio, height, and variance in stroke width. Next, a number of angles that are candidates for use as skew of the image are determined (e.g. one angle is selected for each region. based on peakiness of a histogram of the region, evaluated at different angles). Then, an angle that is most common among these candidates is identified as the angle of skew of the image. The just-described identification of skew angle is performed prior to classification of any region as text or non-text. After skew identification, at least all regions in the subset are rotated by negative of the skew angle, to obtain skew-corrected regions for use in optical character recognition.
Abstract:
Systems, apparatuses, and methods to relate images of words to a list of words are provided. A trellis based word decoder analyses a set of OCR characters and probabilities using a forward pass across a forward trellis and a reverse pass across a reverse trellis. Multiple paths may result, however, the most likely path from the trellises has the highest probability with valid links. A valid link is determined from the trellis by some dictionary word traversing the link. The most likely path is compared with a list of words to find the word closest to the most.
Abstract:
An attribute is computed based on pixel intensities in an image of the real world, and thereafter used to identify at least one input for processing the image to identify at least a first maximally stable extremal region (MSER) therein. The at least one input is one of (A) a parameter used in MSER processing or (B) a portion of the image to be subject to MSER processing. The attribute may be a variance of pixel intensities, or computed from a histogram of pixel intensities. The attribute may be used with a look-up table, to identify parameter(s) used in MSER processing. The attribute may be a stroke width of a second MSER of a subsampled version of the image. The attribute may be used in checking whether a portion of the image satisfies a predetermined test, and if so including the portion in a region to be subject to MSER processing.
Abstract:
Embodiments disclosed facilitate robust, accurate, and reliable recovery of words and/or characters in the presence of non-uniform lighting and/or shadows. In some embodiments, a method to recover text from image may comprise: expanding a Maximally Stable Extremal Region (MSER) in an image, the neighborhood comprising a plurality of sub-blocks; thresholding a subset of the plurality of sub-blocks in the neighborhood, the subset comprising sub-blocks with text, wherein each sub-block in the subset is thresholded using a corresponding threshold associated with the sub-block; and obtaining a thresholded neighborhood.
Abstract:
An electronic device and method use a camera to capture an image of an environment outside followed by identification of regions therein. A subset of the regions is selected, based on attributes of the regions, such as aspect ratio, height, and variance in stroke width. Next, a number of angles that are candidates for use as skew of the image are determined (e.g. one angle is selected for each region. based on peakiness of a histogram of the region, evaluated at different angles). Then, an angle that is most common among these candidates is identified as the angle of skew of the image. The just-described identification of skew angle is performed prior to classification of any region as text or non-text. After skew identification, at least all regions in the subset are rotated by negative of the skew angle, to obtain skew-corrected regions for use in optical character recognition.