Abstract:
A portable immersive telepresence conferencing system which can capture audio data and video data and communicate at least some of the captured data to at least one remote endpoint via a network interface, receive image data and audio data from at least one remote source via the network interface and render a depiction of at least one object, which is substantially the same size of the actual object being shown.
Abstract:
A portable immersive telepresence conferencing system which can capture audio data and video data and communicate at least some of the captured data to at least one remote endpoint via a network interface, receive image data and audio data from at least one remote source via the network interface and render a depiction of at least one object, which is substantially the same size of the actual object being shown.
Abstract:
A portable immersive telepresence conferencing system which can capture audio data and video data and communicate at least some of the captured data to at least one remote endpoint via a network interface, receive image data and audio data from at least one remote source via the network interface and render a depiction of at least one object, which is substantially the same size of the actual object being shown.
Abstract:
A conferencing peripheral for use with a mobile device or laptop or desktop computer can include one or more projectors, cameras, microphones, and speakers. Such a device can work with the mobile device to provide a higher quality conferencing experience than has been provided to date by projecting a substantially full size, high resolution, image of conference participants onto a screen or wall and by providing microphones, speakers, and sufficient audio processing to provide high fidelity audio as part of the conferencing experience. The peripheral may be configured to use the voice and/or data network of the mobile device or may include its own internal network interface.
Abstract:
A videoconference multipoint control unit (MCU) automatically generates display layouts for videoconference endpoints. Display layouts are generated based on attributes associated with video streams received from the endpoints and display configuration information of the endpoints. An endpoint can include one or more attributes in each outgoing stream. Attributes can be assigned based on video streams' role, content, camera source, etc. Display layouts can be regenerated if one or more attributes change. A mixer can generate video streams to be displayed at the endpoints based on the display layout.
Abstract:
A videoconferencing unit for enhancing direct eye-contact between participants can include a curved fully reflective mirror to reflect the image of the near end to a camera. The curved mirror can be placed in front of the display screen near a location where images of faces/eyes of far end participants are to appear. In another example, the videoconferencing unit can include a disintegrated camera configuration that provides an air gap between a front lens element and a rear lens element. The front lens element can be located behind an aperture within the display screen. The air gap can provide an unobstructed path to light from projectors and therefore avoid any undesirable shadows from appearing on the display screen. In another example, the videoconferencing unit can include a combination of the disintegrated camera configuration and mirrors for providing direct eye contact videoconferencing.