Abstract:
A biofeedback control system and method includes monitoring a physiological condition of a user to generate a sensing signal including a physiological information of the user, extracting a physiological variation information from the physiological information to generate a biofeedback signal, and generating a control signal based on the physiological variation information for controlling scenes, scenarios, background music or audio-visual effects of a program or a game. By this way, the biofeedback control system and method can trace a user's mood to automatically adjust a video output or an audio output of an electronic system where a program is playing or a game is running to enhance amusement.
Abstract:
There is provided a pupil tracking device including an active light source, an image sensor and a processing unit. The active light source emits light toward an eyeball alternatively in a first brightness value and a second brightness value. The image sensor captures a first brightness image corresponding to the first brightness value and a second brightness image corresponding to the second brightness value. The processing unit identifies a brightest region at corresponding positions of the first brightness image and the second brightness image as an active light image.
Abstract:
An exposure mechanism of an optical touch system, which includes a plurality of image sensors and a plurality of active light sources each irradiating corresponding to the associated image sensor, includes: capturing image frames using the image sensors with a sampling cycle to allow each of the image sensors to capture a bright image, wherein the sampling cycle includes a plurality of working modes and in each of the working modes at least one of the image sensors captures the bright image in a sampling interval; simultaneously capturing a dark image using all the image sensors in a denoising sampling interval; and calculating a differential image between the bright image and the dark image captured by each image sensor.
Abstract:
A system and method based on hybrid biometric detection capture first images of a user that is projected by first light of different wavelengths, extract various biometric informations from the first images, analyze and compare for each of the biometric informations to generate a matching score, determine an identity for the user according to all of the matching scores, generate second images and PPG signals from dispensed second light from the user, generate a time and PPG variation signal and a space and PPG variation signal for each frame of the second images, convert the time and PPG variation signals into frequency domain signals, determine a reference frequency according to the space and PPG variation signals, retrieve energy of the frequency domain signals at the reference frequency, and establish a three-dimensional energy distribution from the retrieved energy.
Abstract:
There is provided a capacitive touch sensing device including a sensing element, a drive unit, a detection circuit and a processing unit. The sensing element has a first electrode and a second electrode configured to form a coupling capacitance therebetween. The drive unit is configured to input a drive signal to the sensing element. The detection circuit is configured to detect a detection signal coupled to the second electrode from the drive signal through the coupling capacitance and to modulate the detection signal respectively with two signals to generate a two-dimensional detection vector. The processing unit identifies a touch event according to the two-dimensional detection vector.
Abstract:
There is provided a monitoring and warning system for vehicles including a first image sensor, a second image sensor, a warning unit, an expression recognition unit and a sign recognition unit. The first image sensor captures a first image frame toward a driver seat direction. The second image sensor captures a second image frame toward a forward direction. The expression recognition unit recognizes a sleep expression according to the first image frame to accordingly control the warning unit to trigger a first warning. The sign recognition unit recognizes a stop sign according to the second image frame to accordingly control the warning unit to trigger a second warning.
Abstract:
An exposure mechanism of an optical touch system, which includes a plurality of image sensors and a plurality of active light sources each irradiating corresponding to the associated image sensor, includes: capturing image frames using the image sensors with a sampling cycle to allow each of the image sensors to capture a bright image, wherein the sampling cycle includes a plurality of working modes and in each of the working modes at least one of the image sensors captures the bright image in a sampling interval; simultaneously capturing a dark image using all the image sensors in a denoising sampling interval; and calculating a differential image between the bright image and the dark image captured by each image sensor.
Abstract:
A gesture recognition method with improved background suppression includes the following steps. First, a plurality of images are sequentially captured. Next, a position of at least one object in each of the images is calculated to respectively obtain a moving vector of the object at different times. Then, an average brightness of the object in each of the images is calculated. Finally, magnitudes of the moving vectors of the object at different times are respectively adjusted according to the average brightness of the object in each of the images. There is further provided a gesture recognition apparatus using the method mentioned above.
Abstract:
A pupil detection device includes an active light source, an image sensor and a processing unit. The active light source emits light toward an eyeball. The image sensor captures at least one image frame of the eyeball to be served as an image to be identified. The processing unit is configured to calculate a minimum gray value in the image to be identified and to identify a plurality of pixels surrounding the minimum gray value and having gray values within a gray value range as a pupil area.
Abstract:
A remote device includes an image sensor, a readout circuit and a processing unit. The image sensor successively captures a first image and a second image containing at least one reference beacon image. The readout circuit is configured to read first image data of the first image and second image data of the second image from the image sensor. The processing unit is configured to calculate an image feature of the at least one reference beacon image according to the first image data and control the readout circuit to only read the second image data of a range of interest in the second image according to the image feature. There is further provided a power saving method of an interactive system.