Abstract:
A microfluidic device for metering a fluid or for the metered dispensing of a fluid is provided, the device having a substrate, a pipette element having a dispensing side, which pipette element has a sealed side, and the device also having a heating device in the region of the sealed side. Alternatively, the microfluidic device is provided with the pipette element having a side that is connected to a reservoir, and a heating device in the region of the side connected to the reservoir.
Abstract:
In a mass flow sensor having a layered structure on the upper side of a silicon substrate (1), and having at least one heating element (8) patterned out of a conductive layer in the layered structure, thermal insulation between the heating element (8) and the silicon substrate (1) is achieved by way of a silicon dioxide block (5) which is produced beneath the heating element (8) either in the layered structure on the silicon substrate (1) or in the upper side of the silicon substrate (1). As a result, the sensor can be manufactured by surface micromechanics, i.e. without wafer back-side processes.
Abstract:
In a micromechanical sensor and/or a method for manufacturing a micromechanical sensor for detecting a state variable of a substance, the sensor includes at least one heating element, one temperature measuring element and optionally an inlet opening into and/or an outlet opening out of the cavity for this purpose. The sensor includes a cavity configured to at least partially receive the substance through one of the inlet openings and discharge it again at least partially through one of the outlets or outlet openings. The at least one state variable of the substance is detected here as a function of at least one variable representing the operation of the at least one heating element and/or the operation of the at least one temperature element.
Abstract:
A method for fabricating micromechanical components, which provides for depositing one or a plurality of sacrificial layers on a silicon substrate and, thereon, a silicon layer. In subsequent method steps, a structure is patterned out of the silicon layer, and the sacrificial layer is removed, at least under one section of the structure. The silicon layer is doped by an implantation process.