Abstract:
A method, implemented by one or more processors, for scheduling traffic streams in a communication network includes determining, via a processor, a plurality of sets of one or more cell characteristics. Each set of cell characteristics in the plurality of sets of cell characteristics corresponds to a different cell in a plurality of cells. The method also includes determining, via a processor, a first set of one or more traffic characteristics corresponding to a first traffic stream, selecting, via a processor, a first cell from the plurality of cells based on (i) the plurality of sets of cell characteristics and (ii) the first set of traffic characteristics, and assigning, via a processor, the first traffic stream to the first cell for an entire duration of the first traffic stream.
Abstract:
A method is implemented in a communication device operating in a carrier aggregation mode utilizing a plurality of component carriers, where the plurality of component carriers includes at least (i) a primary component carrier associated with a primary cell and a primary cell broadcast message channel, and (ii) a secondary component carrier associated with a secondary cell and a secondary cell broadcast message channel. The method includes receiving, at the communication device, a broadcast message associated with the primary cell via (i) the primary cell broadcast message channel or (ii) the secondary cell broadcast message channel, decoding, at the communication device, the received broadcast message associated with the primary cell, receiving, at the communication device, a broadcast message associated with the secondary cell via the secondary cell broadcast message channel, and decoding, at the communication device, the received broadcast message associated with the secondary cell.
Abstract:
A method includes performing a handover for a mobile device between first and second RAT networks. The first RAT network has a tracking area. The second RAT network has a routing area. Idle mode signaling reduction is activated in the mobile device including activating first and second timers respectively for the first and second RAT networks. In response to either one of the first and second timers expiring, a tracking or routing area update is sent to a first base station. The first base station is in the first RAT network or the second RAT network. The first timer is reset while the second timer maintains a set offset from the first timer. The tracking area update indicates that the mobile device has performed a handover to the first RAT network. The routing area update indicates that the mobile device has handed over to the second RAT network.
Abstract:
A method, implemented by one or more processors, for scheduling traffic streams in a communication network includes determining, via a processor, a plurality of sets of one or more cell characteristics. Each set of cell characteristics in the plurality of sets of cell characteristics corresponds to a different cell in a plurality of cells. The method also includes determining, via a processor, a first set of one or more traffic characteristics corresponding to a first traffic stream, selecting, via a processor, a first cell from the plurality of cells based on (i) the plurality of sets of cell characteristics and (ii) the first set of traffic characteristics, and assigning, via a processor, the first traffic stream to the first cell for an entire duration of the first traffic stream.
Abstract:
Systems, methods, apparatus, and techniques are provided for transmitting information to user equipment (UE) in a communications network. Data is generated in (i) a first frequency range associated with a first set of carriers and (ii) a second frequency range associated with a second set of carriers, where the first frequency range specifies a first communications cell and the second frequency range specifies a second communications cell. The first cell is assigned as a primary cell to a first set of UEs in the communications network. Control data is transmitted to both the first set of UEs and a second set of UEs using at least a portion of the first set of carriers.
Abstract:
In a method of allocating wireless medium resources in a communication system, the communication system including a base station and a plurality of client stations sharing a channel bandwidth, a frequency sub-band of the channel bandwidth is selected for allocating wireless medium resources to a client station. Wireless medium resources are allocated at the base station to the client station. The base station is constrained to allocate wireless medium resources to the client station within the selected frequency sub-band. A subframe is generated for transmission to the client station. The subframe includes at least a data region that contains data for the client station. The data for the client station is confined to be within the selected frequency sub-band.
Abstract:
Systems, methods, apparatus, and techniques are provided for transmitting information to user equipment (UE) in a communications network. Data is generated in (i) a first frequency range associated with a first set of carriers and (ii) a second frequency range associated with a second set of carriers, where the first frequency range specifies a first communications cell and the second frequency range specifies a second communications cell. The first cell is assigned as a primary cell to a first set of UEs in the communications network. Control data is transmitted to both the first set of UEs and a second set of UEs using at least a portion of the first set of carriers.
Abstract:
A wireless communication device first and second transceivers to transmit in respective first and second frequency bands. The device includes an arbiter to map the first frequency band into a plurality of regions and sub-regions and map a plurality of channels to the sub-regions, and a first controller to select one of the plurality of sub-regions and inform the arbiter of the selected one of the plurality of sub-regions. The arbiter is further to select a first group of channels in the second frequency band when the selected one of the plurality of sub-regions is a first sub-region, select a second group of channels in the second frequency band when the selected one of the plurality of sub-regions is a second sub-region, and select a third group of channels in the second frequency band when the selected one of the plurality of sub-regions is a third sub-region.
Abstract:
Systems, methods, apparatus, and techniques are provided for transmitting information to user equipment (UE) in a communications network. Data is generated in (i) a first frequency range associated with a first set of carriers and (ii) a second frequency range associated with a second set of carriers, where the first frequency range specifies a first communications cell and the second frequency range specifies a second communications cell. The first cell, is assigned as a primary cell to a first set of UEs in the communications network. Control data is transmitted to both the first set of UEs and a second set of UEs using at least a portion of the first set of carriers.
Abstract:
Systems, methods, apparatus, and techniques are provided for transmitting information to user equipment (UE) in a communications network. Data is generated in (i) a first frequency range associated with a first set of carriers and (ii) a second frequency range associated with a second set of carriers, where the first frequency range specifies a first communications cell and the second frequency range specifies a second communications cell. The first cell, is assigned as a primary cell to a first set of UEs in the communications network. Control data is transmitted to both the first set of UEs and a second set of UEs using at least a portion of the first set of carriers.