Abstract:
A method for transmitting information of resources for use in transmission of ACK/NACK signals in a mobile communication system is disclosed. An example method for receiving ACK/NACK signals in a mobile communication system is also disclosed. When resources for transmission of data and resources for transmission of control information of the data are scheduled through virtual unit resources, the method identifies information of resources for receiving an ACK/NACK signal for transmission data mapped to information of at least one of a virtual unit resource allocated to the transmission data and a virtual unit resource allocated to control information of the transmission data, and receives the ACK/NACK signal for the transmission data through the information of resources for receiving the ACK/NACK signal.
Abstract:
A method of allocating pilot bits in a wireless communication system using a multiple carrier modulation (MCM) is disclosed. The method includes allocating a plurality of precoded data symbols precoded by a precoding matrix module and a plurality of non-precoded pilot bits to a plurality of subcarriers, and transmitting the allocated precoded data symbols and the allocated non-precoded pilot bits.
Abstract:
According to one embodiment, a method for transmitting an uplink signal includes transmitting the uplink signal including a block of data symbols. The block of data symbols are mapped to at least two sets of subcarrier blocks. Each data symbol of the block of data symbols is mapped to one of subcarriers of the at least two sets of subcarrier blocks. The at least two sets of subcarrier blocks are not contiguous in frequency. The block of data symbols are mapped in sequence starting with a first data symbol to the at least two sets of subcarrier blocks and in increasing order of subcarrier index.
Abstract:
A method for efficiently scheduling virtual resource blocks to physical resource blocks is disclosed. In a wireless mobile communication system, for distributed mapping of consecutively allocated virtual resource blocks to physical resource blocks, when nulls are inserted into a block interleaver used for the mapping, they are uniformly distributed to ND divided groups of the block interleaver, which are equal in number to the number (ND) of physical resource blocks to which one virtual resource block is mapped.
Abstract:
A method for adjusting a granularity of resource allocation in a wireless mobile communication system supporting a compact scheduling is discussed. A resource indication value (RIV) corresponds to a start index (S) of one set of consecutive virtual resource blocks (VRBs) and a length of the VRBs. The start index (S) is selected from among ‘s’ values (where s=P+mT
Abstract translation:讨论了一种在支持紧凑调度的无线移动通信系统中调整资源分配粒度的方法。 资源指示值(RIV)对应于一组连续虚拟资源块(VRB)的开始索引(S)和VRB的长度。 从“s”值(其中s = P + mT
Abstract:
A method and device for a wireless communication system are discussed. The method can be performed by a wireless device, and can include generating a pseudo-random sequence, generating a signal sequence based on the pseudo-random sequence, and transmitting the signal sequence. The pseudo-random sequence is initialized with an initial value based on a cell identifier of a cell.
Abstract:
The present invention relates to a door handle and, more specifically, to a door handle which may comprise: a housing which is fixed to a door and has an inner space; a drive part which supplies rotational power; a rotating guide which is connected to the drive part to receive rotational power therefrom and rotate within the housing; and a handle part which is disposed within the rotating guide, and protrudes out of the housing by forward rotation of the rotating guide and is retracted into the housing by reverse rotation of the rotating guide.
Abstract:
A method for providing precoding weights for data symbols of data control subframes includes generating a downlink frame having control subframes which individually correspond to one of a plurality of downlink data subframes, and inserting weight information into each of the control subframes, such that the weight information is to be applied to data symbols present in the corresponding one of the data subframes. The method further includes transmitting the control subframes and the inserted weight information to a receiving device.
Abstract:
A method and a user equipment for receiving a downlink signal, and a method and a base station for transmitting a downlink signal in a wireless communication system are discussed. The method of receiving a downlink signal according to an embodiment includes receiving downlink scheduling information. The downlink scheduling information includes a frequency block indicator and resource allocation information for one or more first transport blocks (TBs). The method further includes receiving the downlink signal including the one or more first TBs via a first frequency block among multiple frequency blocks. The first frequency block is indicated by the frequency block indicator among the multiple frequency blocks. Each of the multiple frequency blocks does not overlap with other multiple frequency blocks and a respective hybrid automatic repeat request (HARQ) process is provided per each of the one or more first TBs.
Abstract:
According to one embodiment, a method for transmitting an uplink signal includes transmitting the uplink signal including a block of data symbols. The block of data symbols are mapped to at least two sets of subcarrier blocks. Each data symbol of the block of data symbols is mapped to one of subcarriers of the at least two sets of subcarrier blocks. The at least two sets of subcarrier blocks are not contiguous in frequency. The block of data symbols are mapped in sequence starting with a first data symbol to the at least two sets of subcarrier blocks and in increasing order of subcarrier index.