Abstract:
A method and apparatus of making coiled plate, sheet in coiled form or discrete plate is shown. The apparatus is an intermediate thickness slab caster and inline hot strip and plate line. The apparatus includes a continuous strip caster forming an intermediate thickness strand; a torch or shear cutoff for cutting the strand into a slab of desired length; a feed and run back table including a slab takeoff operable transverse of the table; a slab collection and storage area adapted to receive slabs from the slab takeoff; a reheat furnace receiving slabs from both the slab takeoff and the slab collection and storage area, with the exit of the reheat furnace at the feed and run back table; a single or twin stand hot reversing mill for reducing the slab to a thickness of 1 inch or less in no more than three flat passes; a pair of coiler furnaces located on opposite sides of the hot reversing mill; and a final processing line downstream of the pair of coiler furnaces.
Abstract:
A method and apparatus of making coiled plate, sheet in coiled form or discrete plate. The apparatus is an intermediate thickness slab caster and inline hot strip and plate line. The apparatus includes a continuous strip caster forming a strand of between about 3.5 and 5.5 inches thick; a shear for cutting the strand into a slab of desired length; a slab table including a slab takeoff operable transverse of the conveyor table; a slab collection and storage area adjacent to the slab conveyor table adapted to receive slab from the slab takeoff; a reheat furnace having an entry inline with both the slab conveyor table and the slab collection and storage area for receiving slabs from either; a feed and run back table at the exit of the reheat furnace; a hot reversing mill for reducing the slab to a thickness sufficient for coiling in a minimum number of flat passes; a pair of coiler furnaces located on opposite sides of the hot reversing mill; and a finishing line downstream of the pair of coiler furnaces.
Abstract:
Disclosed is a method and apparatus (10) for dispensing powdered pesticide (13). A housing (11) is separated into an upper chamber (12) and lower chamber (51) by a porous media layer (19). The powdered pesticide (13) is contained within the upper chamber (13) and is fluidized when compressed air enters the dispenser from air inlet line (18). The fluidized pesticide is dispensed through adjustable dip tube (26), outlet line (34) and nozzle (36) when a control valve (50) is activated. Only particles having a size smaller than a predetermined size are dispensed; the remaining, relatively large pesticide particles remain in the upper chamber until physically removed.
Abstract:
A hot strip mill having a final reducing stand and runout cooling means downstream of the reducing stand includes an incubator capable of coiling and decoiling the hot strip. The incubator is located intermediate the runout cooling means. In a preferred form the final reducing stand is a hot reversing mill. A second incubator and/or a temper mill and/or a slitter may be positioned downstream of the first incubator. The method of rolling includes isothermally treating the strip within a predetermined time and temperature range in the incubator prior to subsequent processing. The subsequent processing may include any one or more of the following: further deformation by cold rolling, temper rolling or cooling at a desired heat loss rate.
Abstract:
A fiberglass fabric wherein a selected number and pattern of yarns have been coated with an aluminum coating is preimpregnated with epoxy or other resin system and laid up as an integral part of a composite structure of the type having a honeycomb core and a plurality of fiberglass plies. Multiple plies of fiberglass fabric which include the yarns coated with an aluminum coating may be utilized in edgeband fastener areas for increased electrical continuity without loss of mechanical strength of composite parts.
Abstract:
Dispensing systems facilitates formation and dispensation of a use solution from a solid concentrate. The dispensing system may include a cartridge attached to a spray bottle or other dispensing apparatus. The cartridge defines a reservoir configured to store a solid product concentrate. A diluent, such as water, is placed in a fluid reservoir of the dispensing apparatus. Activation of a dispensing mechanism, such as a trigger, creates a vacuum in the cartridge reservoir, opening a valve and drawing diluent from the fluid reservoir into the cartridge reservoir and onto the solid product. The flow of diluent onto the solid product causes a portion of the solid product to be dissolved, eroded, and/or otherwise mixed with the diluent to form a use solution. Actuation of the dispense mechanism may further draw the use solution from the cartridge reservoir and dispense the use solution through the nozzle.
Abstract:
A method and apparatus for dispensing of a product based on weight as a load cell (22) which supports a structure holding the product (20a) to be dispensed. The weight of the product (20a) that is dispensed is determined by use of a controller (23).
Abstract:
A unitary container housing having a plurality of sealed compartments each containing a dry composition which will gradually release an antimicrobially active gas upon exposure to moist air, and each compartment being separately openable to expose its contents to the environment, and a method of using the same.
Abstract:
A washing machine includes a cabinet with an opening. A wash basket is mounted within the cabinet for rotation about a wash basket axis, and includes an access opening through which clothes may be loaded and unloaded. At least one agitator is mounted within the basket for rotation about an agitator axis which is at an angle different from the angle of the wash basket axis. A drive mechanism bathed by washing fluid interconnects a drive motor, the wash basket, and the agitator for rotating the agitator about its rotational axis.
Abstract:
A radially mounted motor is provided in a closed system fluid balance ring for high rotational speed washing machines. The motor is mounted at an orientation of 90.degree. relative to the rotational axis of the washing machine spinner. Such an orientation prevents adverse effects on the motor contacts from centrifugal forces generated by the rotating spinner. A 90.degree. orientation also eliminates deflection of the motor shaft and excessive friction on the motor bearings. The angular orientation of the motor assures proper functioning of the closed system fluid balance ring of the washing machine. The balance system also includes a valve to control movement of fluid within the ring. The valve is mounted at an angle with respect to a tangent of the spinner so as to prevent detrimental effects from the centrifugal forces of the rotating spinner.