Abstract:
In some embodiments, an apparatus includes a core network node configured to associate with a native multicast group a first client device that is associated with a first virtual local area network (VLAN) and operatively coupled to the core network node via a first access network node and an aggregation network node. The core network node can associate with the native multicast group a second client device that is associated with a second VLAN and operatively coupled to the core network node via a second access network node and the aggregation network node. The core network node can define a multicast VLAN including the first VLAN and the second VLAN based on the native multicast group. The core network node can receive a multicast data unit associated with the native multicast group and can also define a single instance of the multicast data unit for the multicast VLAN.
Abstract:
In some embodiments, an apparatus includes a first controller configured to be operatively coupled within a network having a set of network nodes, a forwarding gateway and a configuration entity. The first controller is configured to manage session state and node state associated with the set of network nodes independent of the forwarding gateway. The first controller is configured to fail over to a second controller when the first controller fails, without the forwarding gateway failing over and without the configuration entity failing over.
Abstract:
In some examples, a method includes selecting, by a first virtual routing node of a single-chassis network device having a plurality of forwarding components and a plurality of fabric links coupling respective pairs of the plurality of forwarding components at respective fabric interfaces of the plurality of forwarding components, a fabric interface of a forwarding component of the plurality of forwarding components that has an egress interface toward a network destination and that is associated with the first virtual routing node; in response to receiving a message specifying the fabric interface, storing, by the second virtual routing node to a context forwarding table of the second virtual node, the fabric interface as a next hop for the network destination; selecting, by the second virtual routing node and based on the context forwarding table and a context next hop in a first forwarding table pointing to the context forwarding table, the fabric interface for forwarding network packets destined for the network destination.
Abstract:
An apparatus may (1) receive, at the service provider's network, at least one flow of network traffic from a remote device included in a user's private network, (2) identify, within the flow of network traffic, at least one potentially non-unique private address that represents the remote device with respect to the user's private network, (3) determine, at least one unique routable address that represents the remote device with respect to the service provider's network based at least in part on a network interface assigned to the user's private network, the potentially non-unique private address, and the address-translation table, and then (4) translate, in response to determining the unique routable address, the potentially non-unique private address to the unique routable address to facilitate routing return network traffic to the remote device in connection with the flow of network traffic. Various other apparatuses, systems, and methods are also disclosed.
Abstract:
In some examples, a method includes selecting, by a first virtual routing node of a single-chassis network device having a plurality of forwarding components and a plurality of fabric links coupling respective pairs of the plurality of forwarding components at respective fabric interfaces of the plurality of forwarding components, a fabric interface of a forwarding component of the plurality of forwarding components that has an egress interface toward a network destination and that is associated with the first virtual routing node; advertising, to the second virtual routing node, the fabric interface as a next hop for the network destination and a label for use in establishing a transport label switched path (LSP); and computing, by the second virtual routing node, a path for the transport LSP to include the fabric interface, and establishing the transport LSP along the computed path.
Abstract:
In some examples, a method includes selecting, by a first virtual routing node of a single-chassis network device having a plurality of forwarding components and a plurality of fabric links coupling respective pairs of the plurality of forwarding components at respective fabric interfaces of the plurality of forwarding components, a fabric interface of a forwarding component of the plurality of forwarding components that has an egress interface toward a network destination and that is associated with the first virtual routing node; in response to receiving a message specifying the fabric interface, storing, by the second virtual routing node to a context forwarding table of the second virtual node, the fabric interface as a next hop for the network destination; selecting, by the second virtual routing node and based on the context forwarding table and a context next hop in a first forwarding table pointing to the context forwarding table, the fabric interface for forwarding network packets destined for the network destination.
Abstract:
In some embodiments, an apparatus includes a network node operatively coupled within a network. The network node is configured to send a first authentication message upon boot up, and receive, in response to the first authentication message, a second authentication message configured to be used to authenticate the network node. The network node is configured to send a first discovery message, and receive, based on the first discovery message, a second discovery message configured to be used by the network node to identify an address of the network node and an address of a core network node within the network. The network node is configured to set up a control-plane tunnel to the core network node based on the address of the network node and the address for the core network node and receive configuration information from the core network node through the control-plane tunnel.
Abstract:
In some embodiments, an apparatus includes a first controller configured to be operatively coupled within a network having a set of network nodes, a forwarding gateway and a configuration entity. The first controller is configured to manage session state and node state associated with the set of network nodes independent of the forwarding gateway. The first controller is configured to fail over to a second controller when the first controller fails, without the forwarding gateway failing over and without the configuration entity failing over.
Abstract:
In some embodiments, an apparatus comprises a core network node and a control module within an enterprise network architecture. The core network node is configured to be operatively coupled to a set of wired network nodes and a set of wireless network nodes. The core network node is configured to receive a first tunneled packet associated with a first session from a wired network node from the set of wired network nodes. The core network node is configured to also receive a second tunneled packet associated with a second session from a wireless network node from the set of wireless network nodes through intervening wired network nodes from the set of wired network nodes. The control module is operatively coupled to the core network node. The control module is configured to manage the first session and the second session.
Abstract:
In some embodiments, an apparatus includes a core network node configured to associate with a native multicast group a first client device that is associated with a first virtual local area network (VLAN) and operatively coupled to the core network node via a first access network node and an aggregation network node. The core network node can associate with the native multicast group a second client device that is associated with a second VLAN and operatively coupled to the core network node via a second access network node and the aggregation network node. The core network node can define a multicast VLAN including the first VLAN and the second VLAN based on the native multicast group. The core network node can receive a multicast data unit associated with the native multicast group and can also define a single instance of the multicast data unit for the multicast VLAN.