Abstract:
In one embodiment, an apparatus includes a switch core that has a multi-stage switch fabric. A first set of peripheral processing devices coupled to the multi-stage switch fabric by a set of connections that have a protocol. Each peripheral processing device from the first set of peripheral processing devices is a storage node that has virtualized resources. The virtualized resources of the first set of peripheral processing devices collectively define a virtual storage resource interconnected by the switch core. A second set of peripheral processing devices coupled to the multi-stage switch fabric by a set of connections that have the protocol. Each peripheral processing device from the first set of peripheral processing devices is a compute node that has virtualized resources. The virtualized resources of the second set of peripheral processing devices collectively define a virtual compute resource interconnected by the switch core.
Abstract:
In some embodiments, a non-transitory processor-readable medium stores code representing instructions configured to cause a processor to receive, from an access switch, a first signal including forwarding state information associated with a first peripheral processing device from a set of peripheral processing devices. The code can further represent instructions configured to cause the processor to receive, from the first peripheral processing device, a second signal including a data packet. The code can further represent instructions configured to cause the processor to send, to a replication engine associated with the set of peripheral processing devices, a third signal such that the replication engine (1) defines a copy of the data packet, which is included within the third signal, and (2) sends, to a second peripheral processing device from the set of peripheral processing devices, a fourth signal including the copy of the data packet.
Abstract:
In one embodiment, edge devices can be configured to be coupled to a multi-stage switch fabric and peripheral processing devices. The edge devices and the multi-stage switch fabric can collectively define a single logical entity. A first edge device from the edge devices can be configured to be coupled to a first peripheral processing device from the peripheral processing devices. The second edge device from the edge devices can be configured to be coupled to a second peripheral processing device from the peripheral processing devices. The first edge device can be configured such that virtual resources including a first virtual resource can be defined at the first peripheral processing device. A network management module coupled to the edge devices and configured to provision the virtual resources such that the first virtual resource can be migrated from the first peripheral processing device to the second peripheral processing device.
Abstract:
In one embodiment, edge devices can be configured to be coupled to a multi-stage switch fabric and peripheral processing devices. The edge devices and the multi-stage switch fabric can collectively define a single logical entity. A first edge device from the edge devices can be configured to be coupled to a first peripheral processing device from the peripheral processing devices. The second edge device from the edge devices can be configured to be coupled to a second peripheral processing device from the peripheral processing devices. The first edge device can be configured such that virtual resources including a first virtual resource can be defined at the first peripheral processing device. A network management module coupled to the edge devices and configured to provision the virtual resources such that the first virtual resource can be migrated from the first peripheral processing device to the second peripheral processing device.