Abstract:
In general, techniques are described for configuration of label switched paths in multi-protocol label switched networks. A router comprising a control unit and an interface may be configured to perform the techniques. The control unit may determine a label to bind to the LSP. The interface may transmit a message specifying the label that has been bound to the LSP prior to confirming that the LSP has been successfully configured within the support router to use the bound label.
Abstract:
In one example, techniques of this disclosure may enable a point of local repair (PLR) network device to signal availability of link protection or node protection to a merge point (MP) network device and enable a network device to actively determine whether or not it is a merge point router. Based on whether or not the network device determines it is a MP, the network device may selectively clean up LSP states when there is an upstream link or node failure. The RSVP-TE protocol may be extended to enable a network device to send a tear down message to a downstream router, which may enable the downstream router to conditionally delete locale LSP state information. In some instances, a PLR network device may directly send a tear down message to a MP network device even though the PLR network device may not have a working bypass LSP.
Abstract:
In one example, techniques of this disclosure may enable a point of local repair (PLR) network device to signal availability of link protection or node protection to a merge point (MP) network device and enable a network device to actively determine whether or not it is a merge point router. Based on whether or not the network device determines it is a MP, the network device may selectively clean up LSP states when there is an upstream link or node failure. The RSVP-TE protocol may be extended to enable a network device to send a tear down message to a downstream router, which may enable the downstream router to conditionally delete locale LSP state information. In some instances, a PLR network device may directly send a tear down message to a MP network device even though the PLR network device may not have a working bypass LSP.
Abstract:
In one example, techniques of this disclosure may enable a point of local repair (PLR) network device to signal availability of link protection or node protection to a merge point (MP) network device and enable a network device to actively determine whether or not it is a merge point router. Based on whether or not the network device determines it is a MP, the network device may selectively clean up LSP states when there is an upstream link or node failure. The RSVP-TE protocol may be extended to enable a network device to send a tear down message to a downstream router, which may enable the downstream router to conditionally delete locale LSP state information. In some instances, a PLR network device may directly send a tear down message to a MP network device even though the PLR network device may not have a working bypass LSP.
Abstract:
The disclosed computer-implemented method may include (1) receiving, at a network node within a network, a packet from another network node within the network, (2) identifying, within the packet, a label stack that includes a plurality of labels that collectively represent at least a portion of a label-switched path within the network, (3) popping, from the label stack, a label that corresponds to a next hop of the network node, (4) determining, based at least in part on the label, that the next hop has experienced a failure that prevents the packet from reaching a destination via the next hop, (5) identifying a backup path that merges with the label-switched path at a next-to-next hop included in the label-switched path, and then (6) forwarding the packet to the next-to-next hop via the backup path. Various other methods, systems, and apparatuses are also disclosed.
Abstract:
A first device may receive a packet that includes information identifying a path through a network. The first device may configure a header of the packet to include a first set of identifiers that identifies the path and the first device via which the packet was received. The first device may configure the header of the packet to include a second set of identifiers that identifies a set of devices associated with the path. The set of devices may be associated with providing the packet via a network. The first device may determine whether a counter associated with the first set of identifiers has been initialized. The first device may modify a value of the counter to record a metric. The first device may provide the packet to a second device. The first device may perform an action related to the packet or based on the value of the counter.
Abstract:
The disclosed computer-implemented method may include (1) receiving, at a network node within a network, a packet from another network node within the network, (2) identifying, within the packet, a label stack that includes a plurality of labels that collectively represent at least a portion of a label-switched path within the network, (3) popping, from the label stack, a label that corresponds to a next hop of the network node, (4) determining, based at least in part on the label, that the next hop has experienced a failure that prevents the packet from reaching a destination via the next hop, (5) identifying a backup path that merges with the label-switched path at a next-to-next hop included in the label-switched path, and then (6) forwarding the packet to the next-to-next hop via the backup path. Various other methods, systems, and apparatuses are also disclosed.
Abstract:
The disclosed system may include (1) receiving, at an ingress node within a network, a request to forward a packet along a label-switched path to an egress node within the network, (2) identifying a limit on the number of labels that the ingress node is capable of forwarding within a label stack of the packet, (3) determining that the number of hops within the label-switched path exceeds the limit on the number of labels that the ingress node is capable of forwarding, (4) selecting at least one of the hops within the label-switched path to act as a delegation node that imposes, onto the label stack of the packet, at least one label corresponding to a downstream hop within the label-switched path and (5) forwarding the packet from the ingress node to the delegation node to enable the delegation node to impose the label onto the label stack.
Abstract:
The disclosed system may include (1) receiving, at an ingress node within a network, a request to forward a packet along a label-switched path to an egress node within the network, (2) identifying a limit on the number of labels that the ingress node is capable of forwarding within a label stack of the packet, (3) determining that the number of hops within the label-switched path exceeds the limit on the number of labels that the ingress node is capable of forwarding, (4) selecting at least one of the hops within the label-switched path to act as a delegation node that imposes, onto the label stack of the packet, at least one label corresponding to a downstream hop within the label-switched path and (5) forwarding the packet from the ingress node to the delegation node to enable the delegation node to impose the label onto the label stack.
Abstract:
The disclosed computer-implemented method may include (1) receiving, at a network node within a network, a packet from another network node within the network, (2) identifying, within the packet, a label stack that includes a plurality of labels that collectively represent at least a portion of a label-switched path within the network, (3) popping, from the label stack, a label that corresponds to a next hop of the network node, (4) determining, based at least in part on the label, that the next hop has experienced a failure that prevents the packet from reaching a destination via the next hop, (5) identifying a backup path that merges with the label-switched path at a next-to-next hop included in the label-switched path, and then (6) forwarding the packet to the next-to-next hop via the backup path. Various other methods, systems, and apparatuses are also disclosed.