摘要:
A method of using a point-to-point (P2P) label switched path (LSP) to transmit multicast data packets partially through a multiprotocol label switched (MPLS) network when one or more label switched routers (LSRs) of the MPLS are not multicast label distribution protocol (mLDP) enabled. The P2P LSP can be used to transmit multicast data packets to the head end of a point-to-multipoint (P2MP) LSP created with mLDP enabled LSRs. The P2MP LSP can be used to transmit the multicast data packets through the MPLS network to intended receivers that are external to the MPLS network. The P2MP LSP can be built from an egress edge LSR towards an ingress edge LSR, by mLDP enabled LSRs. The P2P LSP can be built from a core mLDP enabled LSR to the ingress edge LSR, across a non-mLDP enabled LSR between the core mLDP enabled LSR and the ingress edge LSR.
摘要:
Various techniques for exchanging control messages in order to gracefully reroute multicast traffic are disclosed. For example, one method involves sending a join message for a multicast group towards a root of a new multicast tree and forwarding multicast traffic, addressed to the multicast group, on a current multicast tree until an acknowledgment corresponding to the join message is received. The new multicast tree can be identified in response to detection of a topology change within the network. Until the acknowledgment is received, multicast traffic that is received via the new multicast tree can be dropped.
摘要:
A mechanism is provided in which multicast reverse path forwarding can be performed at a provider network egress edge router wherein core routers of the provider network are not configured to support multicast protocols or point-to-multipoint LSPs. An embodiment of the present invention provides for the creation of virtual interfaces in the egress edge router element during configuration of a multicast connection in response to a subscriber request. A virtual interface will be associated with an upstream ingress edge router element and that ingress edge router element is provided a label associated with the virtual interface. Such a label can then be included in datastream packets transmitted through the provider network and be used by reverse path forward checking at the egress edge router element to ascertain whether the multicast datastream is being received by the correct upstream interface.
摘要:
A method of using a point-to-point (P2P) label switched path (LSP) to transmit multicast data packets partially through a multiprotocol label switched (MPLS) network when one or more label switched routers (LSRs) of the MPLS are not multicast label distribution protocol (mLDP) enabled. The P2P LSP can be used to transmit multicast data packets to the head end of a point-to-multipoint (P2MP) LSP created with mLDP enabled LSRs. The P2MP LSP can be used to transmit the multicast data packets through the MPLS network to intended receivers that are external to the MPLS network. When configuring the P2MP LSP, an mLDP enabled LSR receives a first message from a non-mLDP enabled MPLS core router in response to sending a label mapping message to the non-mLDP enabled MPLS core router. In response, a directed LDP session is created between the mLDP enabled LSR and an edge LSR in one embodiment in response to receiving the first message from an MPLS enabled core router. The directed LDP session can be used to transmit a label mapping message to an ingress LSR.
摘要:
A system and method of generating a channel address. The method includes mapping a first address, obtained from a membership report, to a second address to generate a channel address. A multicast network device (MND) for subscribing one or more hosts on a multicast network to one or more channels is disclosed. The MND includes a memory containing a first address and a SSM mapping engine configured to map the first address to a second address to generate a channel address, identifying a channel, in response to the first address contained in the memory.
摘要:
A method and apparatus for providing multicast messages across a data communication network, the method comprising receiving a multicast message and adding to the multicast message a vector stack including at least one address of a router to which the multicast message is to be sent. The multicast message and the vector stack are then forwarded. At the first router indicated by the vector stack, the next address to which the multicast message is to be sent is read. This is repeated as necessary until the multicast message is received by the final address in the vector stack. The multicast message is then routed to the address indicated in the original multicast message.
摘要:
A mechanism is provided to configure a plurality of transport trees in a transport network, each of which correspond to a native tree (e.g., a bidirectional multicast tree). In embodiments of the present invention, each of the plurality of transport trees has a unique root node so that in the event of a failure of any root node, the transport trees with surviving root nodes can be used to transport traffic from the native tree. The present invention provides for each transport network edge router being independently responsible for selection of a transport tree that the edge router will use to transmit a datastream, while also being capable of receiving packets from any transport tree. Through the use of such configured transport trees along with independent selection of a transport tree, the present invention provides a reduction in the disruption of datastream transmission due to a root node failure.
摘要:
A mechanism is provided to configure a plurality of transport trees in a transport network, each of which correspond to a native tree (e.g., a bidirectional multicast tree). In embodiments of the present invention, each of the plurality of transport trees has a unique root node so that in the event of a failure of any root node, the transport trees with surviving root nodes can be used to transport traffic from the native tree. The present invention provides for each transport network edge router being independently responsible for selection of a transport tree that the edge router will use to transmit a datastream, while also being capable of receiving packets from any transport tree. Through the use of such configured transport trees along with independent selection of a transport tree, the present invention provides a reduction in the disruption of datastream transmission due to a root node failure. Aspects of the present invention further provide a capacity for root node load balancing by permitting data transmission over any of the configured transport trees on a source-by-source (or edge router-by-edge router) basis.
摘要:
Various devices and methods for implementing multicast over a label-switched core network are disclosed. For example, an edge node can include a physical interface, which is not enabled for multicast, that is configured to be coupled to a core network and a packet rewrite module coupled to the physical interface. The packet rewrite module is configured to encapsulate a multicast packet with a label and to send the encapsulated multicast packet to the physical interface. The label identifies a unicast label switched path (LSP) through the core network. The edge node can also include a virtual interface creation configured to create a virtual interface that is enabled for multicast. The packet rewrite module can encapsulate the multicast packet in response to detecting that the multicast packet is being sent via the virtual interface.
摘要:
A mechanism to dynamically map a multicast session to a transport tree to reduce flooding of egress routers on the transport tree is provided. A mechanism to reduce the length of time in which transient flooding can occur while the transport tree is being chosen or configured is also provided. The disclosed dynamic mapping mechanisms avoid interruption of an established multicast session. One mechanism disclosed provides for remapping of a multicast session by cloning an original transport tree with which the multicast session is associated, associating the multicast session with the cloned transport tree, and then reconfiguring the cloned transport tree in accord with edge egress routers that have subscribers to that multicast session.