Abstract:
Described is an apparatus including memory cell with retention using resistive memory. The apparatus comprises: memory element including a first inverting device cross-coupled to a second inverting device; a restore circuit having at least one resistive memory element, the restore circuit coupled to an output of the first inverting device; a third inverting device coupled to the output of the first inverting device; a fourth inverting device coupled to an output of the third inverting device; and a save circuit having at least one resistive memory element, the save circuit coupled to an output of the third inverting device.
Abstract:
Described is an apparatus for clock synchronization. The apparatus comprises a pair of interconnects; a first die including a first phase interpolator having an output coupled to one of the interconnects; and a second die, wherein the pair of interconnects is to couple the first die to the second die.
Abstract:
In an embodiment, a processor includes voltage calculation logic to calculate a plurality of maximum operating voltage values each associated with a number of active cores of the plurality of cores, based at least in part on a plurality of coefficient values. In this way, the processor can operate at different maximum operating voltages dependent on the number of active cores. Other embodiments are described and claimed.
Abstract:
An apparatus and method are described for stacking a plurality of cores. For example, one embodiment of an apparatus comprises: a package; an uncore die mounted on the package, the uncore die comprising a plurality of exposed landing slots, each landing slot including an inter-die interface usable to connect vertically to a cores die, the uncore die including a plurality of uncore components usable by cores within the cores die including a memory controller component, a level 3 (L3) cache, a system memory or system memory interface, and a core interconnect fabric or bus; and a first cores die comprising a first plurality of cores, the cores spaced on the first cores die to correspond to all or a first subset of the landing slots on the uncore die, each of the cores having an inter-die interface positioned to be communicatively coupled to a corresponding inter-die interface within a landing slot on the uncore die when the first cores die is vertically coupled on top of the uncore die, wherein the communicative coupling between the inter-die interface of a core and the inter-die interface of its corresponding landing slot communicatively couples the core to the uncore components of the uncore die.
Abstract:
In an embodiment, a processor includes a plurality of cores each to independently execute instructions, a cache memory including a plurality of portions distributed across a die of the processor, a plurality of sleep circuits each coupled to one of the portions of the cache memory, and at least one sleep control logic coupled to the cache memory portions to dynamically determine a sleep setting independently for each of the sleep circuits and to enable the corresponding sleep circuit to maintain the corresponding cache memory portion at a retention voltage. Other embodiments are described and claimed.
Abstract:
Described is an apparatus which comprises: logic to convert output of at least one sensor to a digital sensing signal; a router coupled to the sensor, the router to receive the digital sensing signal and to map into circuit data; and one or more communication interfaces, coupled to the router, to forward circuit data to a circuit endpoint. Described is a method which comprises: providing one or more digital sensing signals from a plurality of sensors; receiving the one or more digital sensing signals; generating packets of data using the one or more digital sensing signals; and providing the packets of data to one or more destinations.
Abstract:
Described is a processor comprising: a plurality of transistors operable to provide dynamically adjustable transistor size, the plurality of transistors coupled at one end to a first power supply and coupled at another end to a second power supply; a circuit coupled to the second power supply, the second power supply to provide power to the circuit; and a power control unit (PCU) to monitor the level of the first power supply, and to dynamically adjust the transistor size of the plurality of transistors so that the second power supply is adjusted to keep the circuit operational.
Abstract:
Integrated clock differential buffering. A first phase locked loop (PLL) circuit having a first clocking ratio is coupled to receive an input differential clock signal. The first PLL circuit generates a first reference clock signal. A second PLL circuit having a second clocking ratio is coupled to receive the input differential clock signal. The second PLL circuit to generate a second reference clock signal. A first set of clock signal output buffers are coupled to receive the first reference clock signal and to provide a first differential reference clock signal corresponding to the first reference clock signal. A second set of clock signal output buffers is coupled to receive the second reference clock signal and to provide a second differential reference clock signal corresponding to the second reference clock signal. The first PLL circuit, the second PLL circuit, the first set of output buffers and the second set of output buffers reside within an integrated circuit package also having a die to receive at least the first differential reference clock signal.
Abstract:
Integrated passive components in a stacked integrated circuit package are described. In one embodiment an apparatus has a substrate, a first die coupled to the substrate over the substrate, the first die including a power supply circuit coupled to the substrate to receive power, a second die having a processing core and coupled to the first die over the first die, the first die being coupled to the power supply circuit to power the processing core, a via through the first die, and a passive device formed in the via of the first die and coupled to the power supply circuit.
Abstract:
Described is an apparatus for clock synchronization. The apparatus comprises a pair of interconnects; a first die including a first phase interpolator having an output coupled to one of the interconnects; and a second die, wherein the pair of interconnects is to couple the first die to the second die.