Abstract:
A method for indicating a transmission opportunity (TXOP) duration in a wireless communication system includes generating, by a TXOP holder, a physical layer protocol data unit (PPDU). The PPDU includes a High Efficiency Signal field A (HE-SIGA), and the HE-SIGA includes a TXOP duration field. The TXOP duration field is used to indicate to other stations a remaining time for using a channel by a station. The TXOP duration field includes a first part which indicates a granularity used, and a second part which indicates the TXOP duration using the granularity indicated by the first part. The TXOP holder sends the generated PPDU.
Abstract:
The present disclosure provides a data transmission method and device. The method includes sensing, by a station, whether a channel allocated by an access point associated with the station is occupied, before obtaining a downlink scheduling phase. If the channel is not occupied, sending, by the station, channel clear signaling to the access point, where the channel clear signaling includes a first identifier used for identifying the station and a second identifier used for identifying the access point. The method also includes receiving, by the station in the downlink scheduling phase, data transmitted by the access point. The present disclosure ensures normal data transmission.
Abstract:
A method including determining, by a first terminal device, a size of a sidelink data packet, determining, by the first terminal device based on the size of the sidelink data packet, a first quantity of time-frequency units corresponding to the sidelink data packet, determining, by the first terminal device, a frequency domain resource of a second time-frequency resource from a first time-frequency resource, based on the first quantity, a resource selection rule, and at least one of a time domain resource of the second time-frequency resource, or a frequency domain resource of the second time-frequency resource, and performing, by the first terminal device, at least one of sending the sidelink data packet to a second terminal device on the second time-frequency resource, or receiving the sidelink data packet from a second terminal device on the second time-frequency resource.
Abstract:
The present disclosure provides a NAV (network allocation vector) setting method in a wireless communications system and a related device. The method includes: receiving, by a receiving node, a PPDU (physical layer protocol data unit) sent by a transmitting node; determining whether the receiving node satisfies a condition of allowing simultaneous transmission; and if the condition of allowing simultaneous transmission is satisfied, keeping a current NAV value unchanged; or if the condition of allowing simultaneous transmission is not satisfied, decoding the received PPDU to obtain a duration field, and updating the current NAV value of the receiving node according to a value of the duration field.
Abstract:
A multi-channel contention method, a communications device, and a wireless network system are presented. The present disclosure is applied to a communications device in a wireless network, where the communications device is an access point or a station; and the communications device includes: a channel contention module configured to: listen to at least two channels, determine a first channel succeeding in contention, and determine a second channel considered to succeed in contention; and an exchange module configured to: exchange a control frame with another communications device in the wireless network using the first channel and the second channel in order to occupy the channels, or exchange a data frame.