Abstract:
The present invention provides a liquid crystal display with a plurality of pixel units. Each pixel unit includes two sub-pixels, and each sub-pixel includes a thin film transistor, a liquid crystal capacitor and a storage capacitor. One of the storage capacitors is a tunable capacitor. The tunable capacitor includes a first conductive layer, an insulating layer, a semiconductor layer with a area Asem, and a second metal layer. The second conductive layer has a first region with a area Acon overlapping with the semiconductor layer. The area Acon is less than the area Asem.
Abstract:
A novel method for driving the data signal transmission and the photo signal readout in a pixel of a display as well as the novel pixel structure corresponding thereto is provided to overcome the lightness uniformity issue of the conventional touch sensitive display resulting from the configuration of readout line. In the present invention, the exclusive readout line for signal readout is not necessary anymore, and through the well-designed configuration for the novel pixel, the data line carrying on a data signal would transmit a photo signal to be read out and processed as well.
Abstract:
A liquid crystal display panel and its driving method are provided. The liquid crystal display panel includes: a plurality of scanning lines and data lines; a pixel matrix having a plurality of pixels which are formed in the intersections of the scanning lines and the data lines; and each of the pixels having: a pixel electrode; a control electrode; a first thin film transistor having a gate electrode connected to the scanning line, a first electrode connected to the data line and a second electrode connected to the pixel electrode; a second thin film transistor having a gate electrode connected to another adjacent scanning line, a first electrode connected to another adjacent data line and a second electrode connected to the control electrode; and wherein one of the two most outside data lines of the pixel matrix is called a boundary data line, and an auxiliary line is disposed between the boundary data line and the pixel electrode adjacent to the boundary data line.
Abstract:
The present invention provides a liquid crystal display with a plurality of pixel units. Each pixel unit includes two sub-pixels, and each sub-pixel includes a thin film transistor, a liquid crystal capacitor and a storage capacitor. One of the storage capacitors is a tunable capacitor. The tunable capacitor includes a first conductive layer, an insulating layer, a semiconductor layer with a area Asem, and a second metal layer. The second conductive layer has a first region with a area Acon overlapping with the semiconductor layer. The area Acon is less than the area Asem.
Abstract:
The invention provides methods of driving a pixel and liquid crystal display panels implementing the methods. The invention generates an ideal data voltage corresponding to a gray level of the pixel, and generates a compensated data voltage corresponding to the gray level according to a polarity change of the pixel. The charging period of the pixel is divided into a first charging time segment and a second charging time segment. The invention charges the pixel by the compensated data voltage during the first charging time segment, and charges the pixel by the compensated data voltage during the second charging time segment.
Abstract:
A novel method for driving the data signal transmission and the photo signal readout in a pixel of a display as well as the novel pixel structure corresponding thereto is provided to overcome the lightness uniformity issue of the conventional touch sensitive display resulting from the configuration of readout line. In the present invention, the exclusive readout line for signal readout is not necessary anymore, and through the well-designed configuration for the novel pixel, the data line carrying on a data signal would transmit a photo signal to be read out and processed as well.
Abstract:
A pixel driving method for a display device is provided. The display device includes at least a first and a second pixels coupled to a signal terminal. The first pixel is located farther from the signal terminal than the second pixel, and each pixel is driven during a time period, which includes a first operation period and a second operation period. The pixel driving method includes steps of generating a compensation voltage and an ideal voltage according to a gray scale value of the each pixel, charging/discharging the each pixel by the compensation voltage corresponding to the each pixel during the respective first operation period, and charging/discharging the each pixel by the ideal voltage corresponding to the each pixel during the respective second operation period. The first operation period for charging/discharging the first pixel is longer than that for charging/discharging the second pixel.
Abstract:
A display device detects a touched position by making use of an inducing element and a counter electrode. The voltage produced by the counter electrode is able to affect a conductivity of the channel of the inducing element corresponding to the touched position. The inducing element and a readout circuit are disposed on a substrate of the display device. The counter electrode and a shielding element are both corresponded to the inducing element. The channel of the inducing element corresponding to the touched position changes the conductivity due to the voltage produced by the corresponding counter electrode, and an inducing signal is then generated. The inducing signal is furnished to the readout circuit for signal processing, and a readout signal is generated for analyzing the touched position.
Abstract:
The present disclosure is directed to a touch panel and a method of locating a touch point. An insulating layer is disposed between a first insulating substrate and a second insulating substrate. A first conductive film with anisotropic impedance is disposed between the first insulating substrate and the insulating layer, and a second conductive film with anisotropic impedance is disposed between the insulating layer and the second insulating substrate. Multiple first pads are disposed on a peripheral region of the first conductive film along a first direction, and multiple second pads are disposed on a peripheral region of the second conductive film along a second direction. The first conductive film has least impedance along the second direction, and the second conductive film has least impedance along the first direction.
Abstract:
The present invention provides a liquid crystal display with a plurality of pixel units. Each pixel unit includes two sub-pixels, and each sub-pixel includes a thin film transistor, a liquid crystal capacitor and a storage capacitor. One of the storage capacitors is a tunable capacitor. The tunable capacitor includes a first conductive layer, an insulating layer, a semiconductor layer with a area Asem, and a second metal layer. The second conductive layer has a first region with a area Acon overlapping with the semiconductor layer. The area Acon is less than the area Asem.