Abstract:
In the wireless charging receive apparatus of the electronic device, a first communication circuit receives charging data, where the charging data is used to indicate a charging type. A first controller identifies, based on the charging data, that the charging type is a first charging type, and outputs a first rectifier control signal to control a first rectifier circuit to operate in a half-bridge mode. Alternatively, a first controller identifies, based on the charging data, that the charging type is a second charging type, and outputs a second rectifier control signal to control a first rectifier circuit to operate in a full-bridge mode. A first receive coil receives an alternating magnetic field and outputs a first induced voltage.
Abstract:
A coil module includes a first planar coil winding and a second planar coil winding. A first coil of the first planar coil winding includes a first outer side part and a first inner side part. A first coil of the second planar coil winding includes a second outer side part and a second inner side part. An end part of the first outer side part is connected to an end part of the second inner side part, and an end part of the second outer side part is connected to an end part of the first inner side part.
Abstract:
A filter apparatus, which includes a feedback active common-mode filter and a feed-forward active common-mode filter, the feedback active common-mode filter includes a common-mode noise detection component and a first filter circuit, and the feed-forward active common-mode filter includes the common-mode noise detection component and a second filter circuit, where the first filter circuit is connected between the common-mode noise detection component and the device, and performs feedback filtering on a first common-mode noise signal, to obtain a second common-mode noise signal; the common-mode noise detection component is connected between the first filter circuit and the second filter circuit, detects the second common-mode noise signal, and provides the second filter circuit with the second common-mode noise signal; and the second filter circuit is connected between an external power source and the common-mode noise detection component, and performs feed-forward filtering on the second common-mode noise signal.
Abstract:
A magnetic integrated device is disclosed, the device includes: a first magnetic core base and a second magnetic core base that are parallel and a first magnetic core column, a second magnetic core column, and a third magnetic core column that are located between the first magnetic core base and the second magnetic core base; and a first winding, a second winding, and a third winding are wound on the first magnetic core column, the second magnetic core column, and the third magnetic core column respectively in a same manner to form a closed magnetic flux loop, where the first winding, the second winding, and the third winding are separately used for connecting to a branch of a three-phase parallel circuit, and in all branches of the three-phase parallel circuit, values of currents are the same, and a difference between each two current phases is 120 degrees.
Abstract:
The present invention provides a voltage conversion device and a method for adjusting common mode noise impedance, which relates to the circuit field, and enables a common mode impedance value of a noise source and an impedance value of an EMI filter to enter a mismatch state, so as to reduce a restriction on design of the EMI filter, so that a size of the EMI filter is smaller and utilization efficiency of the EMI filter is higher. The method is: adjusting a common mode impedance value of a noise source by adjusting a balanced impedance value in a balanced winding on a voltage conversion device, so as to enable the common mode impedance value of the noise source and an impedance value of an EMI filter to enter a mismatch state.
Abstract:
An electronic device and a control method for the electronic device are provided, and relate to the field of wireless charging technologies, to improve compatibility of a power receiving terminal device in wireless charging with a power transmitting terminal device by improving ASK communication quality. The electronic device includes a device circuit (50), a voltage conversion circuit (203), a rectifier circuit (202), a resonant circuit (201), and a modulation circuit (204). The resonant circuit (201) includes a resonant inductor (L2) and a resonant capacitor control circuit (ci1) connected in series to the resonant inductor (L2). A first end of the resonant inductor (L2) is coupled to the rectifier circuit (202), a second end of the resonant inductor (L2) is coupled to a first end of the resonant capacitor control circuit (ci1), and a second end of the resonant capacitor control circuit (ci1) is coupled to the rectifier circuit (202).
Abstract:
This application discloses a coil module, which includes: an insulation layer, a first planar coil winding, and a second planar coil winding, one turn of coil of the first planar coil winding includes a first portion, a second portion, and a first connection part, and one turn of coil of the second planar coil winding includes a third portion, a fourth portion, and a second connection part. The first connection portion connects an outer side part of the first portion and an inner side part of the second portion, the second connection portion connects an inner side part of the third portion and an outer side part of the fourth portion, and there is an overlap between a projection of the first connection portion on a plane of the insulation layer and a projection of the second connection portion on the plane of the insulation layer.
Abstract:
A coil assembly, an electronic device, and a wireless charger. The coil assembly includes a first coil winding, a second coil winding, and a circuit board. The second coil winding is stacked with the first coil winding. A plurality of first terminals and a plurality of second terminals are disposed on the circuit board. Each first terminal is connected to each second terminal by using a cable. In a plurality of cables used to connect the plurality of first terminals and the plurality of second terminals, at least two cables are changed to different line layers in a cross region through first vias to be disposed in a crossed manner.
Abstract:
A wireless charging system includes a transmitter and a receiver, the transmitter includes a transmitter coil and a first series matching capacitor, the transmitter coil is connected to the first series matching capacitor in series to form a first oscillation circuit, and the first oscillation circuit is configured to transfer power to the receiver, and the receiver includes a receiver coil and a second series matching capacitor, the receiver coil is connected to the second series matching capacitor in series to form a second oscillation circuit, and the second oscillation circuit is configured to receive the power transferred by the first oscillation circuit.
Abstract:
A wireless charging receiver circuit, a control method, and a terminal device are disclosed, to compensate for, to some extent, decreases in an output voltage and an output power of the wireless charging receiver circuit due to a great increase in a transmission distance between a secondary coil in the wireless charging receiver circuit and a primary coil in a corresponding wireless charging transmitter circuit.