Abstract:
Disclosed is a structure for precision control of electrical impedance of signal transmission circuit board. A substrate forms thereon a plurality of first signal transmission lines, and a first covering insulation layer is formed on a first surface of the substrate to cover a surface of each first signal transmission lines and each spacing section formed between adjacent first signal transmission lines. Each first signal transmission lines can transmit a differential mode signal or a common mode signal. At least one first flattening insulation layer is formed between a surface of the first covering insulation layer and a first conductive shielding layer so that the first flattening insulation layer fills up the height difference between the surface of each first signal transmission line and the spacing section associated with each first signal transmission line to thereby ensure a consistent distance between the signal transmission lines and the conductive shielding layer for realizing precision control of electrical impedance of the signal transmission circuit board.
Abstract:
Disclosed is a structure of electromagnetic wave resistant connector for flexible flat cable. A flexible flat cable defines an insertion device mounting section to which an insertion device is mounted. The insertion device includes a metal member that is at least partly formed of a metal material. The flexible flat cable forms thereon conductive traces on which an insulation layer is provided. The insulation layer has a surface, which forms, in at least a portion thereof, a conductive shielding layer. The conductive shielding layer extends to the insertion device mounting section, so that when the insertion device is mounted to the insertion device mounting section, electrical connection is formed between the metal member of the insertion device and the conductive shielding layer.
Abstract:
Provided is a circuit board based connector with raised projection section, which is formed by applying substrate bonding and formation techniques to make a connector that features a raised projection section. The circuit substrate has an end that is provided with conductive terminals and an opposite end that is provided with flat cable connection terminals for connection with a flat cable. The circuit substrate has a first surface on which the projection section is formed. A shielding layer covers the projection section and a portion of the first surface. The circuit substrate has a second surface on which a second shielding layer is selectively formed. When the circuit substrate is inserted into an insertion space defined in a connection socket with the conductive terminals thereof, the shielding layer and the projection section of the circuit substrate are put into engagement with and thus retained by the insertion space of the connection socket to thereby fix within the connection socket.
Abstract:
Disclosed is a flat signal transmission cable with bundling structure, including at least one flexible circuit. The flexible circuit includes a plurality of clustered flat cable components that are formed by slitting in a direction parallel to extension direction of the flexible circuit to impose free and independent flexibility for bending to each clustered flat cable component. At least one bundling structure is formed on a lateral side edge of a predetermined clustered flat cable component of the cluster section of the flexible circuit. The bundling structure forms a fastening section. When the clustered flat cable components of the cluster section of the flexible circuit are stacked to form a bundled structure, the bundling structure bundles the plurality of clustered flat cable components and is secured by being fastened by the fastening section.
Abstract:
A signal transmission cable adapted to pass through a hinge assembly includes a flexible circuit substrate; a first connection section formed at a first end of the flexible circuit substrate and having a plurality of signal transmission lines provided thereon; a second connection section formed at a second end of the flexible circuit substrate and having a plurality of signal transmission lines provided thereon; and a cluster section formed on the flexible circuit substrate between the first and the second connection section, and having a plurality of signal transmission lines provided thereon to connect at two ends to the signal transmission lines on the first and the second connection section, respectively. The cluster section includes a plurality of clustered flat cables, which are formed by cutting the flexible circuit substrate along a plurality of paralleled cutting lines extended in the lengthwise direction of the flexible circuit substrate.
Abstract:
A composite flexible circuit planar cable includes a flat cable, a first section, and a second section. The flat cable includes a plurality of straight line like parallel and non-jumping conductor lines. At least one jumping line is formed on the first section to interchangeably connect a selected conductive line of the first section to an another selected conductive line. The second section may also form at least one jumping line to interchangeably connect a selected conductive line of the second section to an another selected conductive line. Through such a jumping line, electrical connection can be formed between signal terminals and corresponding and interchanged signal terminals. The plurality of conductor lines of the flat cable includes at least a pair of differential signal conductor lines, a grounding line, and a power line.
Abstract:
A multilayer stacked circuit arrangement with localized separation section, has a first flat cable and first signal transmission lines arranged on the first flat cable. A second flat cable is stacked on and bonded to the first flat cable. The second flat cable further has signal transmission lines arranged on it. A bonding substance layer is formed between a first non-separation section of the first flat cable and a second non-separation section of the second flat cable for properly stacking the first and second flat cables where the separation sections are spaced apart from each other. A conductive via extends between the first non-separation section and the second non-separation section. At least some of the second signal transmission lines of the second flat cable are connected through the conductive via to the first signal transmission lines of the first flat cable.
Abstract:
A cable bundling device includes a cable positioning and a wrapping mechanism. The cable positioning mechanism includes a first clamping member and a second clamping member, which are set in a working zone. The first and second clamping members function to respectively clamp ends of a cable. One of the wrapping mechanism and the cable positioning mechanism is selectively rotatable to have the bundling material loaded in the wrapping mechanism wrapped around the cable.
Abstract:
A shielded insertion and connection structure for a flat cable connector includes a receiving housing and a hold-down member. The receiving housing forms a receiving compartment and two side walls formed at opposite ends of the receiving compartment. The hold-down member has opposite ends that respectively form pivot structures for pivotal coupling to the side walls and rotation between an open position and a holding position. The hold-down member is made of metal and the receiving housing is at least partly made of metal to form a conduction section, which is connected to a grounding terminal. When the hold-down member is at the open position and a circuit flat cable is inserted into the receiving compartment, the hold-down member is operated to depress and hold the circuit flat cable and the hold-down member is put in electrical connection with the grounding terminal through the conduction section.
Abstract:
Provided is a circuit board based connector with raised projection section, which is formed by applying substrate bonding and formation techniques to make a connector that features a raised projection section. The circuit substrate has an end that is provided with conductive terminals and an opposite end that is provided with flat cable connection terminals for connection with a flat cable. The circuit substrate has a first surface on which the projection section is formed. A shielding layer covers the projection section and a portion of the first surface. The circuit substrate has a second surface on which a second shielding layer is selectively formed. When the circuit substrate is inserted into an insertion space defined in a connection socket with the conductive terminals thereof, the shielding layer and the projection section of the circuit substrate are put into engagement with and thus retained by the insertion space of the connection socket to thereby fix within the connection socket.