Abstract:
A method is provided. The method includes acquiring a first dataset at a first energy spectrum and a second dataset at a second energy spectrum. The method also includes extracting a metal artifact correction signal using the first dataset and the second dataset or using a first reconstructed image and a second reconstructed image generated respectively from the first and the second datasets. The method further includes performing metal artifact correction on the first reconstructed image using the metal artifact correction signal to generate a first corrected image.
Abstract:
As set forth herein low energy signal data and high energy signal data can be acquired. A first material decomposed (MD) image of a first material basis and a second material decomposed (MD) image of a second material basis can be obtained using the low energy signal data and the high energy signal data. At least one of the first or second MD image can be input into a guide filter for output of at least one noise reduced and cross-contamination reduced image. A computed tomography (CT) imaging system can be provided that includes an X-ray source and a detector having a plurality of detector elements that detect X-ray beams emitted from the X-ray source. Low energy signal data and high energy signal data can be acquired using the detector.
Abstract:
A method includes obtaining spectral computed tomography (CT) information via an acquisition unit having an X-ray source and a CT detector. The method also includes, generating, with one or more processing units, using at least one image transform, a first basis image and a second basis image using the spectral CT information. Further, the method includes performing, with the one or more processing units, guided processing on the second basis image using the first basis image as a guide to provide a modified second basis image. Also, the method includes performing at least one inverse image transform using the first basis image and the modified second basis image to generate at least one modified image.
Abstract:
A method includes obtaining spectral computed tomography (CT) information via an acquisition unit having an X-ray source and a CT detector. The method also includes, generating, with one or more processing units, using at least one image transform, a first basis image and a second basis image using the spectral CT information. Further, the method includes performing, with the one or more processing units, guided processing on the second basis image using the first basis image as a guide to provide a modified second basis image. Also, the method includes performing at least one inverse image transform using the first basis image and the modified second basis image to generate at least one modified image.
Abstract:
A method is provided. The method includes acquiring a first dataset at a first energy spectrum and a second dataset at a second energy spectrum. The method also includes extracting a metal artifact correction signal using the first dataset and the second dataset or using a first reconstructed image and a second reconstructed image generated respectively from the first and the second datasets. The method further includes performing metal artifact correction on the first reconstructed image using the metal artifact correction signal to generate a first corrected image.
Abstract:
The use of the channelized preconditioners in iterative reconstruction is disclosed. In certain embodiments, different channels correspond to different frequency sub-bands and the output of the different channels can be combined to update an image estimate used in the iterative reconstruction process. While individual channels may be relatively simple, the combined channels can represent complex spatial variant operations. The use of channelized preconditioners allows empirical adjustment of individual channels.
Abstract:
A framework for an iterative reconstruction algorithm is described which combines two or more of an ordered subset method, a preconditioner method, and a nested loop method. In one type of implementation a nested loop (NL) structure is employed where the inner loop sub-problems are solved using ordered subset (OS) methods. The inner loop may be solved using OS and a preconditioner method. In other implementations, the inner loop problems are created by augmented Lagrangian methods and then solved using OS method.
Abstract:
An imaging system includes a rotatable gantry for receiving an object to be scanned, a generator configured to energize an x-ray source to generate x-rays, a detector positioned to receive the x-rays that pass through the object, and a computer. The computer is programmed to obtain knowledge of a metal within the object, scan the object using system scanning parameters, reconstruct an image of the object using a reconstruction algorithm, and automatically select at least one of the system scanning parameters and the reconstruction algorithm based on the obtained knowledge.