-
公开(公告)号:US10672384B2
公开(公告)日:2020-06-02
申请号:US16573323
申请日:2019-09-17
Applicant: Google LLC
Inventor: Georg Heigold , Erik McDermott , Vincent O. Vanhoucke , Andrew W. Senior , Michiel A. U. Bacchiani
IPC: G10L15/06 , G10L15/16 , G10L15/183 , G06N3/04
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.
-
公开(公告)号:US10650289B2
公开(公告)日:2020-05-12
申请号:US15868587
申请日:2018-01-11
Applicant: Google LLC
Inventor: Christian Szegedy , Vincent O. Vanhoucke
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for image processing using deep neural networks. One of the methods includes receiving data characterizing an input image; processing the data characterizing the input image using a deep neural network to generate an alternative representation of the input image, wherein the deep neural network comprises a plurality of subnetworks, wherein the subnetworks are arranged in a sequence from lowest to highest, and wherein processing the data characterizing the input image using the deep neural network comprises processing the data through each of the subnetworks in the sequence; and processing the alternative representation of the input image through an output layer to generate an output from the input image.
-
公开(公告)号:US10460211B2
公开(公告)日:2019-10-29
申请号:US15395530
申请日:2016-12-30
Applicant: Google LLC
Inventor: Vincent O. Vanhoucke , Christian Szegedy , Sergey Ioffe
Abstract: A neural network system that includes: multiple subnetworks that includes: a first subnetwork including multiple first modules, each first module including: a pass-through convolutional layer configured to process the subnetwork input for the first subnetwork to generate a pass-through output; an average pooling stack of neural network layers that collectively processes the subnetwork input for the first subnetwork to generate an average pooling output; a first stack of convolutional neural network layers configured to collectively process the subnetwork input for the first subnetwork to generate a first stack output; a second stack of convolutional neural network layers that are configured to collectively process the subnetwork input for the first subnetwork to generate a second stack output; and a concatenation layer configured to concatenate the pass-through output, the average pooling output, the first stack output, and the second stack output to generate a first module output for the first module.
-
公开(公告)号:US20180261204A1
公开(公告)日:2018-09-13
申请号:US15910720
申请日:2018-03-02
Applicant: Google LLC.
Inventor: Georg Heigold , Erik McDermott , Vincent O. Vanhoucke , Andrew W. Senior , Michiel A.U. Bacchiani
IPC: G10L15/06 , G10L15/183 , G10L15/16
CPC classification number: G10L15/063 , G06N3/0454 , G10L15/16 , G10L15/183
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.
-
公开(公告)号:US12125257B2
公开(公告)日:2024-10-22
申请号:US17372090
申请日:2021-07-09
Applicant: Google LLC
Inventor: Vincent O. Vanhoucke , Christian Szegedy , Sergey Ioffe
IPC: G06K9/62 , G06F18/24 , G06K9/00 , G06K9/46 , G06N3/04 , G06N3/044 , G06N3/08 , G06V10/44 , G06V10/94
Abstract: A neural network system that includes: multiple subnetworks that includes: a first subnetwork including multiple first modules, each first module including: a pass-through convolutional layer configured to process the subnetwork input for the first subnetwork to generate a pass-through output; an average pooling stack of neural network layers that collectively processes the subnetwork input for the first subnetwork to generate an average pooling output; a first stack of convolutional neural network layers configured to collectively process the subnetwork input for the first subnetwork to generate a first stack output; a second stack of convolutional neural network layers that are configured to collectively process the subnetwork input for the first subnetwork to generate a second stack output; and a concatenation layer configured to concatenate the pass-through output, the average pooling output, the first stack output, and the second stack output to generate a first module output for the first module.
-
公开(公告)号:US11550871B1
公开(公告)日:2023-01-10
申请号:US16544717
申请日:2019-08-19
Applicant: Google LLC
Inventor: Vincent O. Vanhoucke
IPC: G06N3/04 , G06F16/958 , G06F40/174 , G06V30/413
Abstract: Structured documents are processed using convolutional neural networks. For example, the processing can include receiving a rendered form of a structured document; mapping a grid of cells to the rendered form; assigning a respective numeric embedding to each cell in the grid, comprising, for each cell: identifying content in the structured document that corresponds to a portion of the rendered form that is mapped to the cell, mapping the identified content to a numeric embedding for the identified content, and assigning the numeric embedding for the identified content to the cell; generating a matrix representation of the structured document from the numeric embeddings assigned to the cells of the grids; and generating neural network features of the structured document by processing the matrix representation of the structured document through a subnetwork comprising one or more convolutional neural network layers.
-
公开(公告)号:US20210334605A1
公开(公告)日:2021-10-28
申请号:US17372090
申请日:2021-07-09
Applicant: Google LLC
Inventor: Vincent O. Vanhoucke , Christian Szegedy , Sergey Ioffe
Abstract: A neural network system that includes: multiple subnetworks that includes: a first subnetwork including multiple first modules, each first module including: a pass-through convolutional layer configured to process the subnetwork input for the first subnetwork to generate a pass-through output; an average pooling stack of neural network layers that collectively processes the subnetwork input for the first subnetwork to generate an average pooling output; a first stack of convolutional neural network layers configured to collectively process the subnetwork input for the first subnetwork to generate a first stack output; a second stack of convolutional neural network layers that are configured to collectively process the subnetwork input for the first subnetwork to generate a second stack output; and a concatenation layer configured to concatenate the pass-through output, the average pooling output, the first stack output, and the second stack output to generate a first module output for the first module.
-
公开(公告)号:US20210201092A1
公开(公告)日:2021-07-01
申请号:US17199978
申请日:2021-03-12
Applicant: Google LLC
Inventor: Christian Szegedy , Vincent O. Vanhoucke
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for image processing using deep neural networks. One of the methods includes receiving data characterizing an input image; processing the data characterizing the input image using a deep neural network to generate an alternative representation of the input image, wherein the deep neural network comprises a plurality of subnetworks, wherein the subnetworks are arranged in a sequence from lowest to highest, and wherein processing the data characterizing the input image using the deep neural network comprises processing the data through each of the subnetworks in the sequence; and processing the alternative representation of the input image through an output layer to generate an output from the input image.
-
公开(公告)号:US20210125601A1
公开(公告)日:2021-04-29
申请号:US17143140
申请日:2021-01-06
Applicant: Google LLC
Inventor: Georg Heigold , Erik Mcdermott , Vincent O. Vanhoucke , Andrew W. Senior , Michiel A.U. Bacchiani
IPC: G10L15/06 , G10L15/16 , G10L15/183 , G06N3/04
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.
-
公开(公告)号:US20200118549A1
公开(公告)日:2020-04-16
申请号:US16573323
申请日:2019-09-17
Applicant: Google LLC
Inventor: Georg Heigold , Erik McDermott , Vincent O. Vanhoucke , Andrew W. Senior , Michiel A.U. Bacchiani
IPC: G10L15/06 , G06N3/04 , G10L15/183 , G10L15/16
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.
-
-
-
-
-
-
-
-
-