Abstract:
The approaches presently disclosed provide for fault-interpretation in a seismic volume with computer assistance, allowing automatic or semi-automatic determination of a fault surface and associated displacement across the fault. The present fault interpretation approach uses pattern matching algorithms and does not require prior interpretation of the stratigraphic horizons. In certain implementations the fault interpretation approach estimates the 3D fault surface as part of a joint fault surface location and displacement optimization process.
Abstract:
A workflow is presented that facilitates defining geocontextual information as a set of rules for multiple seismic attributes. Modeling algorithms may be employed that facilitate analysis of multiple seismic attributes to find candidate regions that are most likely to satisfy the set of rules. These candidates may then be sorted based on how well they represent the geocontextual information.
Abstract:
A method in one embodiment includes acquiring optical image information with a detection unit configured to be operably coupled to a patient. The optical image information corresponds to microcirculation of the patient. The method also includes generating a microcirculation map of microvasculature of the patient using the optical image information. Further, the method includes generating a quantitative microcirculation index based on the microcirculation map, the quantitative microcirculation index corresponding to a condition of the patient.
Abstract:
A computationally efficient dictionary learning-based term is employed in an iterative reconstruction framework to keep more spatial information than two-dimensional dictionary learning and require less computational cost than three-dimensional dictionary learning. In one such implementation, a non-local regularization algorithm is employed in an MBIR context (such as in a low dose CT image reconstruction context) based on dictionary learning in which dictionaries from different directions (e.g., x,y-plane, y,z-plane, x,z-plane) are employed and the sparse coefficients calculated accordingly. In this manner, spatial information from all three directions is retained and computational cost is constrained.
Abstract:
A monitoring system for determining component wear is provided. The monitoring system includes a memory device configured to store a reference model of a component and a component wear monitoring (CWM) device configured to receive a component image of a first component being inspected, detect a plurality of manmade structural features in the received component image, adjust the component image to mask out at least some of the plurality of manmade structural features from the received component image, compare the adjusted component image with the reference model to determine one or more potential defect areas in the first component, analyze each of the one or more defect areas to determine a state of the potential defect areas, and output the state of the one or more potential defect areas to a user.
Abstract:
A method in one embodiment includes acquiring optical image information with a detection unit configured to be operably coupled to a patient. The optical image information corresponds to microcirculation of the patient. The method also includes generating a microcirculation map of microvasculature of the patient using the optical image information. Further, the method includes generating a quantitative microcirculation index based on the microcirculation map, the quantitative microcirculation index corresponding to a condition of the patient.
Abstract:
An approach for seismic data analysis is provided. In accordance with embodiments of this approach, parallel regions within a volume of seismic data are modeled. Residual regions within the volumetric data set are identified, where the residual regions comprise those regions not modeled as parallel regions. The residual regions or a graphic derived from the residual regions are displayed for review.
Abstract:
Improved systems and methods for the analysis of digital images are provided. More particularly, the present disclosure provides for improved systems and methods for the analysis of digital images of biological tissue samples. Exemplary embodiments provide for: i) segmenting, ii) grouping, and iii) quantifying molecular protein profiles of individual cells in terms of sub cellular compartments (nuclei, membrane, and cytoplasm). The systems and methods of the present disclosure advantageously perform tissue segmentation at the sub-cellular level to facilitate analyzing, grouping and quantifying protein expression profiles of tissue in tissue sections globally and/or locally. Performing local-global tissue analysis and protein quantification advantageously enables correlation of spatial and molecular configuration of cells with molecular information of different types of cancer.
Abstract:
Approaches related to performing calibration of a CT scanner or of processes (e.g., correction and/or reconstruction) performed on acquired CT scan data are described. In certain described approaches, calibration is attained without performing a calibration scan using a dedicated calibration phantom. In certain embodiments, calibration is performed using a feature intrinsic to the imaged object, such as a jacket disposed about a drilled core sample.
Abstract:
A system monitoring an additive manufacturing (AM) machine recoat operation includes an automatic defect recognition subsystem having a predictive model catalog each applicable to a product and to one recoat error indication having a domain dependent feature, the predicative models representative of a recoat error indication appearance at a pixel level of an image captured during recoat operations. The system includes an online monitoring subsystem having an image classifier unit that classifies recoat error indications at the pixel level based on predictive models selected on their metadata, a virtual depiction unit that creates a virtual depiction of an ongoing AM build from successive captured image, and a processor unit to monitor the build for recoat error indications, classify a detected indication, and provide a determination regarding the severity of the detected indication on the ongoing build. A method and a non-transitory computer-readable medium are also disclosed.