Abstract:
An ultrasonic transducer driving circuit configured to supply an output current and/or an output voltage to an output line for driving an ultrasonic transducer is provided. The ultrasonic transducer driving circuit includes a first current discharge circuit configured to allow a current arising from electric charges accumulated in the ultrasonic transducer to flow from the output line to ground when the output line is at a positive voltage, and a second current discharge circuit configured to allow the current arising from the electric charges accumulated in the ultrasonic transducer to flow from ground to the output line when the output line is at a negative voltage. The first current discharge circuit and the second current discharge circuit are controlled based on the output current and/or the output voltage.
Abstract:
An impedance analyzer is provided. The analyzer includes a signal excitation generator comprising a digital to analog converter, where a transfer function of the digital to analog converter from digital to analog is programmable. The impedance analyzer further includes a receiver comprising a low noise amplifier (LNA) and an analog to digital converter (ADC), where the LNA is a current to voltage converter; where the programmable digital to analog transfer function is implemented by a direct digital synthesizer (DDS) and a voltage mode digital to analog converter, or a digital phase locked loop (PLL), or both. Further, a multivariable sensor node having an impedance analyzer is provided. Furthermore, a multivariable sensor network having a plurality of multivariable sensor nodes is provided.
Abstract:
A method for multivariable measurements using a single-chip impedance analyzer includes providing a sensor, exposing the sensor to an environmental parameter, determining a complex impedance of the sensor over a measured spectral frequency range of the sensor, and monitoring at least three spectral parameters of the sensor.