Abstract:
A gas turbine includes a compressor and at least one combustor downstream from the compressor. The combustor includes a burner having an inner shroud extending axially along at least a portion of the burner, an outer shroud radially separated from the inner shroud and extending axially along at least a portion of the burner, and a plurality of stator vanes extending radially between the inner shroud and the outer shroud. The stator vanes have an inner end proximate the inner shroud and an outer end proximate the outer shroud. The burner further includes a vortex tip at one of either the inner end or the outer end of the stator vanes. The vortex tip provides a gap between the inner end and the inner shroud or the outer end and the outer shroud, and the vortex tip includes a plurality of fuel ports. The gas turbine further includes a turbine downstream from the combustor.
Abstract:
A fuel nozzle for a gas turbine generally includes a main body having an upstream end axially separated from a downstream end. The main body at least partially defines a fuel supply passage that extends through the upstream end and at least partially through the main body. A fuel distribution manifold is disposed at the downstream end of the main body. The fuel distribution manifold includes a plurality of axially extending passages that extend through the fuel distribution manifold. A plurality of fuel injection ports defines a flow path between the fuel supply passage and each of the plurality of axially extending passages.
Abstract:
A combustion arrangement includes a combustion section. Also included is an air discharge section downstream of the combustion section. Further included is a transition region disposed between the combustion section and the air discharge section. Yet further included is a transition piece defining the combustion section and the transition region, wherein the transition piece is configured to carry a combusted gas flow from the combustion section to the air discharge section. Also included is a damping device operatively coupled to the transition piece proximate the air discharge section.
Abstract:
A fuel nozzle for a gas turbine generally includes a main body having an upstream end axially separated from a downstream end. The main body at least partially defines a fuel supply passage that extends through the upstream end and at least partially through the main body. A fuel distribution manifold is disposed at the downstream end of the main body. The fuel distribution manifold includes a plurality of axially extending passages that extend through the fuel distribution manifold. A plurality of fuel injection ports defines a flow path between the fuel supply passage and each of the plurality of axially extending passages.
Abstract:
The present application provides a micro-mixer combustion nozzle for mixing a flow of fuel and a flow of air in a gas turbine engine. The micro-mixer combustion nozzle may include a fuel plate with a number of fuel plate apertures and a fuel plate passage in communication with the flow of fuel and an air plate with a number of air plate apertures and an air plate passage in communication with the flow of air. The fuel plate passage and the air plate passage may align to mix in part the flow of fuel and the flow of air.
Abstract:
A flexible seal for sealing between two adjacent gas turbine components includes a forward end, an aft end axially separated from the forward end, and an intermediate portion between the forward end and the aft end. The intermediate portion defines a continuous curve in the circumferential direction, such that the aft end is circumferentially offset from the forward end. In other cases, the forward and aft ends are axially, radially, and circumferentially offset from one another. A method of sealing using the flexible seal includes inserting, in an axial direction, the aft end of the flexible seal into a recess defined by respective seal slots of two adjacent gas turbine components; and pushing the flexible seal in an axial direction through the recess until the forward end is disposed within the recess.
Abstract:
A turbomachine includes a plurality of transition ducts disposed in a generally annular array. Each transition duct includes an inlet, an outlet, and a passage defining an interior and extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of each transition duct is offset from the inlet along the longitudinal axis and the tangential axis. Each transition duct further includes an upstream portion and a downstream portion. The turbomachine further includes a late injection assembly disposed between the upstream portion and the downstream portion of a transition duct and which provides fluid communication for an injection fluid to flow into the interior downstream of the inlet of the transition duct. The late injection assembly includes a late injection ring.
Abstract:
A turbomachine includes a plurality of transition ducts and a support ring assembly. The outlet of a transition duct includes an inner flange and an outer flange. The turbomachine includes bore holes defined in the inner flange and outer flange, mating bore holes defined in the support ring assembly, and mechanical fasteners connecting the inner flange and the outer flange to the support ring assembly. A first one of the bore holes or mating bore holes has a first maximum radial gap and a first maximum tangential gap relative to an associated mechanical fastener. A second one of the bore holes or mating bore holes has a second maximum radial gap and a second maximum tangential gap relative to an associated mechanical fastener. The second maximum radial gap is greater than the first maximum radial gap or the second maximum tangential gap is greater than the first maximum tangential gap.
Abstract:
An axially staged combustion system includes a primary fuel nozzle, a primary combustion zone defined downstream from the primary fuel nozzle, a conical duct disposed downstream from the primary combustion zone and an integrated exit piece disposed downstream from the conical duct. The conical duct and the integrated exit piece at least partially form a hot gas path of the duct section. A plurality of fuel injectors is oriented radially inwardly with respect to an axial centerline of the duct section and is disposed downstream from the primary combustion zone. Each fuel injector of the plurality of fuel injectors provides for injection of a secondary fuel-air mixture into the hot gas path. The plurality of fuel injectors is distributed along at least one of the conical duct and the integrated exit piece.
Abstract:
A turbomachine includes a plurality of transition ducts disposed in a generally annular array. Each of the plurality of transition ducts includes an inlet, an outlet, and a passage defining an interior and extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of each of the plurality of transition ducts is offset from the inlet along the longitudinal axis and the tangential axis. The turbomachine includes a support ring assembly downstream of the plurality of transition ducts along a hot gas path, and a plurality of mechanical fasteners connecting at least one transition duct of the plurality of transition ducts to the support ring assembly. The turbomachine includes a late injection assembly providing fluid communication for an injection fluid to flow into the interior downstream of the inlet of at least one transition duct of the plurality of transition ducts.