Abstract:
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.
Abstract:
A fuel flow passes through a micromixer section of a gas turbine that includes a plurality of mixing tubes for transporting a fuel/air mixture and a distribution plate including a plurality of distribution holes and a plurality of tube holes for accommodating the mixing tubes. Each of the mixing tubes includes a plurality of fuel holes through which fuel enters the mixing tubes. The tube holes and the mixing tubes form a plurality of annulus areas between the distribution plate and the mixing tubes. The distribution holes and the annulus areas are configured to pass the fuel flow through the distribution plate toward the fuel holes. A flow management device modifies an effective size of the annulus areas to control a distribution of the fuel flow through the distribution holes and the annulus areas of the distribution plate to provide a uniform fuel/air composition in each of the mixing tubes.
Abstract:
A system including a plurality of multi-tube fuel nozzles each having a plurality of tubes extending in an axial direction, wherein each tube of the plurality of tubes includes an air inlet, a fuel inlet, and a fuel-air mixture outlet, a fuel nozzle housing including a first outer wall extending circumferentially about a central axis, wherein the plurality of multi-tube fuel nozzles are disposed in the fuel nozzle housing, an inlet flow conditioner removably coupled to a first end portion of the first outer wall, wherein the inlet flow conditioner includes a plurality of air openings, and an aft plate assembly removably coupled to a second end portion of the first outer wall, wherein the aft plate assembly includes an aft plate having a plurality of tube apertures, and the plurality of tubes extend to the plurality of tube apertures.
Abstract:
A premixer assembly for mixing air and fuel for combustion includes a plurality of tubes disposed at a head end of a combustor assembly. Also included is a tube of the plurality of tubes, the tube including an inlet end and an outlet end. Further included is at least one non-circular portion of the tube extending along a length of the tube, the at least one non-circular portion having a non-circular cross-section, and the tube having a substantially constant cross-sectional area along its length
Abstract:
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.
Abstract:
A system including a plurality of multi-tube fuel nozzles each having a plurality of tubes extending in an axial direction, wherein each tube of the plurality of tubes includes an air inlet, a fuel inlet, and a fuel-air mixture outlet, and a fuel nozzle housing, including an outer wall extending circumferentially about a central axis, a plurality of radial walls extending from the outer wall inwardly toward the central axis, a plurality of fuel nozzle receptacles disposed within the outer wall, wherein the plurality of radial walls separate the plurality of fuel nozzle receptacles from one another, and the plurality of multi-tube fuel nozzles are disposed in the plurality of fuel nozzle receptacles a mounting structure including a plurality of radial support arms extending outwardly from the outer wall.
Abstract:
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.
Abstract:
The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.
Abstract:
Additive manufacturing techniques may be utilized to construct effusion plates. Such additive manufacturing techniques may include defining a configuration for an effusion plate having one or more internal cooling channels. The manufacturing techniques may further include depositing a powder into a chamber, applying an energy source to the deposited powder, and consolidating the powder into a cross-sectional shape corresponding to the defined configuration. Such methods may be implemented to construct an effusion plate having one or more channels with a curved cross-sectional geometry.
Abstract:
A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.