Abstract:
Method for inhibiting scale deposits in an aqueous system. The method may include adding anti-scalant to the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 500 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate, and wherein the aqueous system has a pH of at least about 9. The method may include adding anti-scalant to the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 500 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate, in the presence of up to about 0.4 ppm of cationic polymer. The method may include adding anti-scalant to the aqueous system at at least one of before a pulping digester and at a pulping digester, such that an amount of anti-scalant in the aqueous system is up to about 500 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate. The method may involve adding a nucleation promoter/initiator to the aqueous system to inhibit formation of scale deposits, such that an amount of the nucleation promoter/initiator in the aqueous system is up to about 500 ppm. The method may involve adding first cations to the aqueous system and removing second cations which are distinct from the first cations from the aqueous system, to inhibit the second cations from forming scale deposits, wherein the aqueous system is at a temperature of about 70° C. to 500° C. Inorganic compositions therefor.
Abstract:
A method for inhibiting resinous and sticky substances from filling or forming deposits on or within papermaking forming wire, by applying to said wire an effective inhibiting amount of a composition comprising at least one cationic agent selected from the group consisting of (a) cationic polyureas, (b) hydrophobically modified cationic polymers, (c) alkylammonium or/and alkylimidazolium salts, and optionally at least one nonionic amphiphilic copolymer selected from (i) hydrophobically modified polyethylene glycols], (ii) hydrophobically modified cellulose ethers, (iii) copolymers of vinyl alcohol and vinyl alkonate, (iv) polyoxyalkylene block copolymers, and (v) hydrophilically modified polydimethylsiloxanes.
Abstract:
A method of improving retention and drainage in a papermaking process is disclosed. The method provides for the addition of an associative polymer, starch or a starch derivative and optionally a siliceous material to the papermaking slurry. Additionally, a composition comprising an associative polymer and starch or starch derivative and optionally further comprising cellulose fiber is disclosed.
Abstract:
Processes for preparing cellulose products, such as paper products which include substantially simultaneously or sequentially adding at least one aluminum compound and at least one silicate to a cellulose slurry, to a cellulose slurry such as a paper slurry. In particular, the present invention is directed to processes for preparing the cellulose products, such as paper products which include substantially simultaneously or sequentially adding at least one aluminum compound and at least one monovalent silicate or water-soluble metal silicate complex to a cellulose slurry, such as a paper slurry. Compositions containing at least one aluminum compound and at least one water-soluble metal silicate, and cellulose products, such as paper products containing at least one water-soluble metal silicate complex.
Abstract:
Aqueous composition, including a water-soluble metal silicate complex which includes at least one divalent metal. A process for preparing an aqueous composition including water-soluble metal silicate complex includes combining monovalent cation silicate and divalent metal ions in an aqueous environment to form the water-soluble metal silicate complex. A process of modifying cellulose slurry includes adding an aqueous composition having water-soluble metal silicate complex which includes divalent metal to cellulose slurry. A process for preparing cellulose slurry includes adding monovalent cation silicate to cellulose slurry comprising a sufficient amount of divalent metal ions to combine with the monovalent cation silicate to form water-soluble metal silicate complex. A process of making cellulose product includes: adding an aqueous composition having water-soluble metal silicate complex including divalent metal to cellulose slurry; and forming cellulose product from the cellulose slurry. A process of making cellulose product includes: adding monovalent cation silicate to cellulose slurry comprising a sufficient amount of divalent metal ions to combine with the monovalent cation silicate to form water-soluble metal silicate complex; and forming cellulose product from the cellulose slurry. A cellulose product includes cellulose fiber and residue of at least one water-soluble metal silicate complex. A process for waste water treatment includes adding at least one water-soluble metal silicate complex to waste water, wherein the water-soluble metal silicate complex includes divalent metal. A process for waste water treatment includes adding monovalent cation silicate to waste water, wherein the waste water comprises divalent metal ions in an amount sufficient to combine with the monovalent cation silicate to form water-soluble metal silicate complex.