Abstract:
An extraction program causes a computer to execute a process. The process includes adding an event to a first pattern including the events according to the sequential order, thus generating a second pattern in such a manner that the second pattern is generated by adding the event when a first value is less than a predetermined threshold; when the event is added, adding a predetermined value to the first value, and adding the predetermined value to a second value in a column corresponding to an end of the added event among second values corresponding to respective columns of a table; extracting the second pattern that satisfies a predetermined condition; and when an event in a second or subsequent column in the table is added.
Abstract:
A non-transitory computer-readable storage medium storing a machine learning program that causes at least one computer to execute a process, the process includes estimating a first label distribution of unlabeled training data based on a classification model and an initial value of a label distribution of a transfer target domain, the classification model being trained by using labeled training data which corresponds to a transfer source domain and unlabeled training data which corresponds to the transfer target domain; acquiring a second label distribution based on the labeled training data; acquiring a weight of each label included in the labeled training data and the unlabeled training data based on a difference between the first label distribution and the second label distribution; and re-training the classification model by the labeled training data and the unlabeled training data reflected the weight of each label.
Abstract:
A program for causing a computer to execute processing including: acquiring a plurality of datasets, each of which includes data values associated with a label, the data values having properties different for each dataset; calculating an index indicating a degree of a difference between first and second datasets by using a data value in the second dataset; calculating accuracy of a prediction result for the second dataset, predicted by a prediction model trained using the first dataset; specifying a relationship between the index and the accuracy of the prediction result from the prediction model, based on the index and the accuracy calculated for each of a plurality of combinations of the first and second datasets; and estimating accuracy of the prediction result from the prediction model for a third dataset including data values without labels based on the specified relationship and the index between the first and third datasets.
Abstract:
A deterioration suppression device generates a plurality of trained machine learning models having different characteristics on the basis of each training data included in a first training data set and assigned with a label indicating correct answer information. In a case where estimation accuracy of label estimation with respect to input data to be estimated by any trained machine learning model among the plurality of trained machine learning models becomes lower than a predetermined standard, the deterioration suppression device generates a second training data set including a plurality of pieces of training data using an estimation result by a trained machine learning model with the estimation accuracy equal to or higher than the predetermined standard. The deterioration suppression device executes re-learning of the trained machine learning model with the estimation accuracy lower than the predetermined standard using the second training data set.
Abstract:
An apparatus receives, at a discriminator within a generative adversarial network, first generation data from a first generator within the generative adversarial network, where the first generator has performed learning using a first data group. The apparatus receives, at the discriminator, a second data group, and performs learning of a second generator based on the first generation data and the second data group where the first generation data is handled as false data by the discriminator.
Abstract:
A data processing apparatus includes a processor. The processor selects candidate tables corresponding to a first table. The respective candidate tables include a first data item included in the first table. The processor acquires a first coincidence degree of the first table for the respective candidate tables. The processor selects third tables corresponding to one of the candidate tables. The respective third tables include a second data item included in the one of the candidate tables. The processor acquires a second coincidence degree of the one of the candidate tables for the respective third tables. The processor acquires a reliability of the one of the candidate tables on basis of the first coincidence degree of the first table for the one of the candidate tables and the second coincidence degree of the one of the candidate tables for the respective third tables.
Abstract:
A data output method includes: generating, by a computer, (n−1) first conditions (n is an integer number of three or more) on a relationship between two data by dividing, in a sequential order, a common element condition in which an attribute of each of n data includes a common element, the attribute of each of the two data including the common element; extracting first data corresponding to each of n data to set the first data as a node under a condition; creating a first graph in which nodes are coupled with links based on the first condition; creating a second graph by repeatedly performing a first process, a second process and a third process; determining candidates of a combination of data from the second graph; and outputting a combination of data satisfying the common element condition from the candidates of a combination of data.
Abstract:
An estimation method implemented by a computer, the estimation method includes: executing learning processing by training an autoencoder with a data group corresponding to a specific task; calculating a degree of compression of each part regarding data included in the data group by using the trained autoencoder; and estimating a common part with another piece of data included in the data group regarding the data corresponding to the specific task based on the calculated degree of compression of each part.
Abstract:
An allocation method executed by a computer includes dividing each of a plurality of pieces of time-series data into a plurality of segments, allocating a label to each of the pieces of time-series data based on features of each segment in the pieces of time-series data, and allocating a predetermined segment in time-series data, included in the pieces of time-series data, with a label allocated to the time-series data to which the predetermined segment belongs.
Abstract:
A learning device learns at last one parameter of a learning model such that each intermediate feature quantity becomes similar to a reference feature quantity, the each intermediate feature quantity being calculated as a result of inputting a plurality of sets of augmentation training data to a first neural network in the learning model, the plurality of augmentation training data being generated by performing data augmentation based on same first original training data. The learning device learns at last one parameter of a second network, in the learning model, using second original training data, which is different than the first original training data, and using the reference feature quantity.