Abstract:
A planar graph generation device that includes a processor that executes a process. The process includes: computing a specific value, including components of a value representing complexity of a track of the given track data, and a value representing a non-nearness between the given track data and each of all the other track data; selecting the track data with the smallest specific value among the collection; a first portion of the first track or a second portion of the second track positioned within the specific distance of each other, or a combination of the first portion and the second portion, is approximated to a specific portion such that a track of the addition target track data after addition passes through the specific portion in cases in which there are portions positioned within the specific distance of each other in a combination of the first track with the second track.
Abstract:
A data processing method executed by a computer, the data processing method including specifying a first region range among from a data table, a first region range including a plurality of numerical value regions which are continuously disposed in a first direction, a plurality of numerical values in the plurality of numerical value regions having a relationship with a specified numerical value in an adjacent region, specifying a second region range, the second region range being specified by shifting the first region range in a second direction, the second region range including at least one character string region and at least one blank region, associating a character string in the at least one character string region and the plurality of numerical values, and outputting data that indicates an association between the character string in the at least one character string region and the plurality of numerical values.
Abstract:
An analysis method executed by a computer, the analysis method includes: detecting a plurality of staying points where one or more mobile bodies stayed in accordance with a plurality of trace data associated with trajectories of the one or more mobile bodies; comparing, in accordance with the plurality of trace data, a first ending time of stay in a first staying point selected from among the plurality of staying points with second ending times of stay in one or more second staying points which are similar to the first staying point; and determining feature of the first staying point in accordance with a result of the comparison.
Abstract:
A data output method includes: generating, by a computer, (n−1) first conditions (n is an integer number of three or more) on a relationship between two data by dividing, in a sequential order, a common element condition in which an attribute of each of n data includes a common element, the attribute of each of the two data including the common element; extracting first data corresponding to each of n data to set the first data as a node under a condition; creating a first graph in which nodes are coupled with links based on the first condition; creating a second graph by repeatedly performing a first process, a second process and a third process; determining candidates of a combination of data from the second graph; and outputting a combination of data satisfying the common element condition from the candidates of a combination of data.
Abstract:
An apparatus receives, at a discriminator within a generative adversarial network, first generation data from a first generator within the generative adversarial network, where the first generator has performed learning using a first data group. The apparatus receives, at the discriminator, a second data group, and performs learning of a second generator based on the first generation data and the second data group where the first generation data is handled as false data by the discriminator.
Abstract:
A storage medium storing a program that causes a processor to execute for acquiring distribution data indicating a distribution of spots in an area to be searched, and area data indicating positions of divided areas obtained by dividing the area to be searched; generating an adjacency matrix indicating an adjacency relation between the divided areas from the area data; generating an evaluation function for evaluating selection of the divided areas using: a variable indicating selection of consecutive divided areas, the distribution data, and the adjacency matrix; calculating a gradient of a value of the evaluation function from a current value of the variable; executing a gradient method search for updating the value of the variable using the calculated gradient; and determining selection of the divided areas as an optimal area for event occurrence analysis based on a result of the gradient method search.
Abstract:
A traffic flow rate calculation method includes, by using a road network produced by representing a road system with a plurality of nodes and a plurality of edges including a stationary sensor edge in which a stationary sensor measures the number of moving bodies; obtaining the first number of observations corresponding to the number of trajectories measured by mobile sensors for each path, the each path including the at least one edge, the each of trajectories corresponding to a movement trajectory of the moving body, and the second number of observations corresponding to the number of moving bodies measured by the stationary sensor; estimating an observation rate by using the first number of observations and the second number of observations; calculating a traffic flow rate for the each path by using the estimated observation rate and the first number of observations for each path.
Abstract:
A data output method includes: generating, by a computer, (n−1) first conditions (n is an integer number of three or more) on a relationship between two data by dividing, in a sequential order, a common element condition in which an attribute of each of n data includes a common element, the attribute of each of the two data including the common element; extracting first data corresponding to each of n data to set the first data as a node under a condition; creating a first graph in which nodes are coupled with links based on the first condition; creating a second graph by repeatedly performing a first process, a second process and a third process; determining candidates of a combination of data from the second graph; and outputting a combination of data satisfying the common element condition from the candidates of a combination of data.
Abstract:
A data output method, includes: extracting, by a computer, data satisfying a first condition on one data among a plurality of conditions, from a plurality of data, as a node; creating a first graph by coupling two nodes satisfying a second condition on a relationship between two data among the plurality of conditions with a link; creating a second graph by deleting a node that does not satisfy the second condition from the first graph; determining candidates of data combination in the second graph; and outputting a data combination satisfying the plurality of conditions from the candidates of data combination.
Abstract:
An analysis method includes: acquiring first path information indicating a first movement path, first velocity information of a first moving body on the first movement path, second path information indicating a second movement path, and second velocity information of a second moving body on the second movement path; calculating, based on a specific rule, a similarity between the first velocity information and the second velocity information when the first path information and the second path information are extracted as candidates to be integrated; determining, based on the similarity, whether the first path information and second path information are to be integrated; and generating graph information to draw at least a part of the first path information and at least a part of the second path information as a single path when it is determined that the first path information and the second path information are to be integrated.