Abstract:
A sidelink communication method performed by a UE in a communication system may comprise receiving, from a base station, a message including configuration information of a subchannel which is a sensing unit of a resource pool; determining a size of the subchannel based on the configuration information; and performing a sensing operation in units of the subchannel in the resource pool. Therefore, the sidelink communication can be efficiently performed, and the performance of the communication system can be improved.
Abstract:
Disclosed herein are a method and an apparatus for transmitting an uplink control channel for a high speed terminal. In a method for transmitting an uplink control channel in a mobile communication system, an uplink control channel signal is generated depending on at least one resource index received from a base station and the uplink control channel signal is transmitted to the base station through a resource block corresponding to the resource index. A location where the uplink control channel signal is allocated is changed depending on the resource index.
Abstract:
Disclosed is a technique for switching from a master node to a secondary node in a communication system. A method of a first communication node may comprise: adding the first communication node as a primary secondary cell (PSCell) to a second communication node through dual connectivity (DC); generating a first user plane path for smart dynamic switching (SDS) and a first instance for supporting the first user plane path according to a request from the second communication node; transmitting information on the first user plane path and the first instance to a terminal; receiving user data based on the first user plane path from the terminal as the first instance; and transmitting the user data to a core network using the first user plane path.
Abstract:
A method for sidelink DRX communication may comprise configuring a first resource sensing window for identifying whether resources of a candidate resource set to be used for sidelink DRX communication are reserved or used; identifying whether the resources of the candidate resource set are reserved or used based on the first resource sensing window; determining a selected resource set based on a result of the identification; configuring a second resource sensing window based on information on a DRX active time of a receiving terminal, which is received from the receiving terminal; identifying whether the resources of the candidate resource set are reserved or used by another terminal based on the second resource sensing window; updating the selected resource set based on a result of the identification on the second resource sensing window; and transmitting data to the receiving terminal by using a resource of the updated selected resource set.
Abstract:
A method and an apparatus for transmitting a message used to access a base station (BS) in a random access (RA) procedure by user equipment (UE) are provided. The method includes: determining a first RA preamble resource corresponding to an SSB index which corresponds to a transmission beam among a plurality of transmission beams of BS; and transmitting a message 1 of the RA procedure by using a first RA preamble format which includes the first RA preamble resource and at least one second RA preamble resource which neighbors the first RA preamble resource.
Abstract:
A transmitting apparatus for modulating data based on a predetermined 2q-QAM constellation and a receiving apparatus and method for demodulating a signal based on the predetermined 2q-QAM constellation, wherein the last q-2 bits corresponding to a quadrant of the predetermined 2q-QAM constellation are same with a gray code of a 2q-2-QAM constellation, the last q-2 bits corresponding to the remaining quadrants of the predetermined 2q-QAM constellation are determined by performing symmetric transformation for the last q-2 bits of the quadrant of the predetermined 2q-QAM around the x-axis or the y-axis.
Abstract:
A base station configures beam identifiers for a plurality of transmission beams. The base station configures virtual beam identifiers for the plurality of transmission beams based on the maximum number of transmission beams from the plurality of transmission beams that may spatially overlap one another, and the beam identifiers. The base station allocates resources using the virtual beam identifiers.
Abstract:
For a transmitting terminal which is connected to a small base station of a small cell to transmit data to a receiving terminal belonging to another small cell, information of the receiving terminal to a target small base station to which the receiving terminal is connected is received from a small base station; when handover to the target small base station may be made, the handover to the target small base station is made depending on a handover instruction from the small base station and then data are transmitted to the receiving terminal through the target small base station.