Abstract:
A portable toothbrush is provided with a deployed toothbrush member with a thin thickness in a support plate to be carried conveniently and includes a toothbrush head and a toothbrush bar by a configuration in which a deployed toothbrush member is bent and assembled. The portable toothbrush includes: a toothbrush head assembly in which toothbrush head portions facing each other at a specific interval are formed on opposite sides of a surface of a lengthwise upper end of the support plate to be divided and first coupling holes are formed on sides of the toothbrush head portions; and a toothbrush bar assembly in which support bosses facing opposite side ends of a lower end of the support plate are formed at opposite side ends of a surface of the support plate contacting the toothbrush head portions and second coupling holes are formed on sides of the support bosses.
Abstract:
A robot system and a control method thereof in which, when a robot is located in a docking region, the robot calculates a distance by emitting infrared rays and detecting ultrasonic waves oscillated from a charging station, measures a distance from the charging station and performs docking with charging station. The distance between the robot and the charging station is precisely measured, thereby performing smooth and correct docking of the robot with the charging station. Further, the robot emits infrared rays only while performing docking with the charging station and thus reduces power consumption required for infrared ray emission, and wakes up a circuit in the charging station based on the infrared rays emitted from the robot and thus reduces power consumption of the charging station.
Abstract:
An image sensor and an image processing system including the same are provided. The image sensor includes a pixel array including a plurality of pixels each connected to one of first through m-th column lines to output a pixel signal, where “m” is an integer of at least 2; analog-to-digital converters each configured to receive the pixel signal corresponding to one of the first through m-th column lines, to compare the pixel signal with a ramp signal, and to convert the pixel signal to a digital pixel signal; and a blocking circuit connected to an input terminal of at least one of the analog-to-digital converters to block an influence of an operation of others among the analog-to-digital converters.
Abstract:
An obstacle sensor includes a line light irradiating unit including a light-emitting unit, a light-emitting driving unit to drive the light-emitting unit, and a first conical mirror, an apex of which is disposed towards the light-emitting unit in a light irradiation direction of the light-emitting unit and which converts light emitted from the light-emitting unit into line light irradiated in all directions, and a reflected light receiving unit including a second conical mirror to condense light, that is irradiated from the first conical mirror and is then reflected from an obstacle, a lens, that is spaced from the apex of the second conical mirror by a predetermined distance and transmits the reflected light, an imaging unit to image the reflected light that passes through the lens, an image processing unit, and an obstacle sensing control unit.
Abstract:
A robot cleaner which does not stop to change a traveling direction thereof, and a control method thereof includes setting a territory about which cleaning will be performed based on position data acquired during traveling about a cleaning area, predetermining a cleaning path to clean the territory about which cleaning will be performed, and if the cleaning path includes a zigzag traveling path, changing the traveling direction of the robot cleaner by executing curved traveling of the robot cleaner during traveling along the zigzag traveling path, thus decreasing the time required to clean an area during a change of the traveling direction of the robot cleaner.