TERNARY CONTENT ADDRESSABLE MEMORY UTILIZING COMMON MASKS AND HASH LOOKUPS
    13.
    发明申请
    TERNARY CONTENT ADDRESSABLE MEMORY UTILIZING COMMON MASKS AND HASH LOOKUPS 有权
    使用常见掩码和哈希查询的第三内容可寻址记忆

    公开(公告)号:US20150127900A1

    公开(公告)日:2015-05-07

    申请号:US14490566

    申请日:2014-09-18

    Abstract: A ternary content-addressable memory (TCAM) that is implemented based on other types of memory (e.g., SRAM) in conjunction with processing, including hashing functions. Such a H-TCAM may be used, for example, in implementation of routing equipment. A method of storing routing information on a network device, the routing information comprising a plurality of entries, each entry has a key value and a mask value, commences by identifying a plurality of groups, each group comprising a subset number of entries having a different common mask. The groups are identified by determining a subset number of entries that have a common mask value, meaning at least a portion of the mask value that is the same for all entries of the subset number of entries.

    Abstract translation: 基于其他类型的存储器(例如,SRAM)结合处理(包括散列函数)实现的三元内容可寻址存储器(TCAM)。 这样的H-TCAM可以用于例如路由设备的实现。 一种在网络设备上存储路由信息的方法,所述路由信息包括多个条目,每个条目具有密钥值和掩码值,通过标识多个组来开始,每个组包括具有不同的条目的子集数目 普通面具。 通过确定具有公共掩码值的条目的子集数目来识别这些组,这意味着掩码值的至少一部分对于子集数目的条目的所有条目是相同的。

    SYSTEM AND METHOD FOR IDENTIFICATION OF LARGE-DATA FLOWS
    14.
    发明申请
    SYSTEM AND METHOD FOR IDENTIFICATION OF LARGE-DATA FLOWS 有权
    用于识别大数据流的系统和方法

    公开(公告)号:US20150124825A1

    公开(公告)日:2015-05-07

    申请号:US14490596

    申请日:2014-09-18

    CPC classification number: H04L45/7453

    Abstract: Apparatus, systems and methods may be used to monitor data flows and to select and track particularly large data flows. A method of tracking data flows and identifying large-data (“elephant”) flows comprises extracting fields from a packet of data to construct a flow key, computing a hash value on the flow key to provide a hashed flow signature, entering and/or comparing the hashed flow signature with entries in a flow hash table. Each hash table entry includes a byte count for a respective flow. When the byte count for a flow exceeds a threshold value, the flow is added to a large-data flow (“elephant”) table and the flow is then tracked in the large-data flow table.

    Abstract translation: 装置,系统和方法可用于监视数据流并选择和跟踪特别大的数据流。 跟踪数据流和识别大数据(“大象”)流的方法包括从数据包中提取字段以构建流密钥,在流密钥上计算散列值以提供散列流签名,输入和/或 将散列流签名与流哈希表中的条目进行比较。 每个散列表条目包括相应流的字节计数。 当流量的字节数超过阈值时,将流量添加到大数据流(“大象”)表,然后在大数据流表中跟踪流。

Patent Agency Ranking