Abstract:
In one embodiment, the system may identify a virtual network, the virtual network including a plurality of virtual entities and connections among the plurality of virtual entities. The system may automatically map each of the plurality of virtual entities to one or more resources or resource pools such that the virtual network is mapped to a physical network, wherein mapping includes allocating one or more resources or resource pools to a corresponding one of the plurality of virtual entities.
Abstract:
In one embodiment, a device determines a hierarchy of layers of a network comprising a plurality of networking devices. The device configures, in response to a request by a client to access remotely a particular endpoint in the network, a proxy chain of remote access agents executed by a plurality of networking devices in the network to allow the client to access remotely the particular endpoint. Each of those networking devices proxies traffic between different layers of the hierarchy. The device determines an access policy for the particular endpoint indicative of which commands may be sent to the particular endpoint by the client, based in part on where the particular endpoint is in the hierarchy. The device controls, based on the access policy, whether a command sent by the client is transmitted via the proxy chain to the particular endpoint.
Abstract:
In some implementations, a device receives a login request from a web browser executed by a client endpoint in a first network. The device provides a one-time password to the web browser that causes the client endpoint to invoke a local handler process associated with an access service executed by the client endpoint or invoke access by the web browser to a particular uniform resource locator on the device. The device receives a remote connection request from the access service that includes the one-time password to access a target endpoint in a second network. The device configures, based on the remote connection request, a remote access connection between the client endpoint in the first network and the target endpoint in the second network.
Abstract:
In one embodiment, a service receives a device registration request sent by an endpoint device, wherein the endpoint device executes an onboarding agent that causes the endpoint device to send the device registration request via a cellular connection to a private access point name (APN) associated with the service. The service verifies that a network address of the endpoint device from which the device registration request was sent is associated with an integrated circuit card identifier (ICCID) or international mobile equipment identity (IMEI) indicated by the device registration request. The service identifies a tenant identifier associated with the ICCID or IMEI. The service sends, based on the tenant identifier, a device registration response to the endpoint device via the private APN.
Abstract:
In one embodiment, an earthbound transceiver in a low earth orbit (LEO) satellite network establishes a connection with a first LEO satellite from a first set of LEO satellites. The first set of LEO satellites are distributed across a first plurality of orbits including first neighboring LEO satellites of the first LEO satellite, and the first neighboring LEO satellites have a fixed or semi-fixed position relative to the first LEO satellite. The earthbound transceiver determines first signal strength values associated with the first set of LEO satellites and second signal strength values associated with a second set of LEO satellites. The earthbound transceiver then periodically compares the first signal strength values to the second signal strength values. At an optimal handoff time, the earthbound transceiver initiates the handoff operation from the first LEO satellite to a second LEO satellite from the second set of LEO satellites.
Abstract:
In one embodiment, an earthbound transceiver in a low earth orbit (LEO) satellite network establishes a connection with a first LEO satellite from a first set of LEO satellites. The first set of LEO satellites are distributed across a first plurality of orbits including first neighboring LEO satellites of the first LEO satellite, and the first neighboring LEO satellites have a fixed or semi-fixed position relative to the first LEO satellite. The earthbound transceiver determines first signal strength values associated with the first set of LEO satellites and second signal strength values associated with a second set of LEO satellites. The earthbound transceiver then periodically compares the first signal strength values to the second signal strength values. At an optimal handoff time, the earthbound transceiver initiates the handoff operation from the first LEO satellite to a second LEO satellite from the second set of LEO satellites.
Abstract:
In one embodiment, a service receives a device registration request sent by an endpoint device, wherein the endpoint device executes an onboarding agent that causes the endpoint device to send the device registration request via a cellular connection to a private access point name (APN) associated with the service. The service verifies that a network address of the endpoint device from which the device registration request was sent is associated with an integrated circuit card identifier (ICCID) or international mobile equipment identity (IMEI) indicated by the device registration request. The service identifies a tenant identifier associated with the ICCID or IMEI. The service sends, based on the tenant identifier, a device registration response to the endpoint device via the private APN.
Abstract:
Embodiments relate to a method for enhancing and prioritizing operation technology (OT) control systems in a safety instrumented system (SIS) environment by incorporating safety levels. The method includes receiving network packets associated with OT systems by network interface. From network packets, OT systems associated with safety integrity level (SIL) values are identified. In response to identifying OT control systems associated with SIL values, determining priority levels from SIL values of OT systems. The method includes identifying, among OT control systems, network packets associated with a critical OT system associated with a SIL value having a higher priority level. The critical OT system may be prioritized that comprises encoding the network packets of the critical OT system, with corresponding SIL value. The prioritized critical OT system may be prioritized based on SIL value and classified into a network group associated with a network tag to deliver traffic with higher priority.
Abstract:
Embodiments relate to a method for enhancing and prioritizing operation technology (OT) control systems in a safety instrumented system (SIS) environment by incorporating safety levels. The method includes receiving network packets associated with OT systems by network interface. From network packets, OT systems associated with safety integrity level (SIL) values are identified. In response to identifying OT control systems associated with SIL values, determining priority levels from SIL values of OT systems. The method includes identifying, among OT control systems, network packets associated with a critical OT system associated with a SIL value having a higher priority level. The critical OT system may be prioritized that comprises encoding the network packets of the critical OT system, with corresponding SIL value. The prioritized critical OT system may be prioritized based on SIL value and classified into a network group associated with a network tag to deliver traffic with higher priority.
Abstract:
Automatic onboarding of a device onto a cellular network may be provided through a Wireless Local Area Network (WLAN). Subsequent to a device connecting to a first network (e.g., the WLAN), information associated with the device and the first network may be received. One or more tags may be generated and an intent profile may be defined for the device based on the received information, where the intent profile may indicate at least a second network (e.g., the cellular network) that the device is enabled to connect with and one or more policies associated with the connection. The tags and intent profile may be transmitted to a service provider platform, and an onboarding profile template identified using the tags and the intent profile may be received from the service provider platform. The onboarding profile template may be provided to the device to enable connection to the second network.