Abstract:
Provided herein are ion-implanted glass based articles with improved flaw suppression properties. The ion-implanted glass based articles generally have a final indent fracture threshold (IFT) load of at least 650 grams, and/or a scratch threshold force of at least 10 N, which represents at least 1.25-fold enhancement compared to the glass based article prior to ion-implantation. Factors affecting the efficacy of the ion implantation process can include the IFT load of the starting glass or glass ceramic substrate (native IFT load), ion type, ion dose, implant energy, beam current, and glass temperature.
Abstract:
A glass manufacturing apparatus comprises a forming device configured to produce a glass ribbon and a control device configured to independently operate a first pull roll apparatus, a second pull roll apparatus, and a third pull roll apparatus such that at least one of a first upstream pair of draw rolls rotates with a substantially constant torque, at least one of a first midstream pair of draw rolls rotates with a substantially constant torque, and at least one of a first downstream pair of draw rolls rotates with a substantially constant angular velocity. In further examples, methods of manufacturing a glass ribbon are provided.
Abstract:
Methods and apparatuses for managing pulling forces applied to a glass ribbon in a draw apparatus are disclosed. The method includes applying a front-side and a rear-side drive torque to a glass. The method further includes calculating automatically with the at least one electronic controller a front-side and a rear-side average pulling force applied to the glass ribbon and corresponding to a first time period of at least one rotation of the front-side or rear-side stub roller, respectively. The front-side average pulling force and the rear-side average pulling force are compared to establish a pulling force differential between the front-side average pulling force and the rear-side average pulling force. One or more of the front-side drive torque or the rear-side drive torque are modified to decrease the pulling force differential between the front-side average pulling force and the rear-side average pulling force.
Abstract:
A glass manufacturing apparatus comprises a forming device configured to produce a glass ribbon and a control device configured to independently operate a first pull roll apparatus, a second pull roll apparatus, and a third pull roll apparatus such that at least one of a first upstream pair of draw rolls rotates with a substantially constant torque, at least one of a first midstream pair of draw rolls rotates with a substantially constant torque, and at least one of a first downstream pair of draw rolls rotates with a substantially constant angular velocity. In further examples, methods of manufacturing a glass ribbon are provided.
Abstract:
Methods and apparatuses for fabricating continuous glass ribbons are disclosed. The method includes forming the continuous glass ribbon by drawing the continuous glass ribbon from a draw housing in a drawing direction, heating at least one portion of a central region of the continuous glass ribbon at a heating location downstream of the draw housing, sensing a temperature of the continuous glass ribbon at a sensed temperature location downstream of the draw housing, and automatically controlling the heating of the at least one portion of the central region of the continuous glass ribbon based on the sensed temperature to mitigate distortion of the continuous glass ribbon.
Abstract:
A control apparatus for controlling a thickness of a substrate, such as a glass ribbon. The control apparatus comprises a laser assembly and a shielding assembly. The laser assembly generates an elongated laser beam traveling in a propagation direction along an optical path. The shielding assembly comprises at least one shield selectively disposed in the optical path. The shield is configured to decrease an optical intensity of a region of the elongated laser beam. The shielding assembly is configured to change an intensity profile of the elongated laser beam from an initial intensity profile to a targeted intensity profile. A desired targeted intensity profile can be dictated by an arrangement of the shield(s) relative to the optical path, and can be selected to affect a temperature change at portions of the substrate determined to benefit from a reduction in thickness.
Abstract:
A method of continuously processing glass ribbon having a thickness≤0.3 mm. The method includes providing a glass processing apparatus having a first processing zone, a second processing zone and a third processing zone. The glass ribbon is continuously fed from the first processing zone, through the second processing zone to the third processing zone. The feed rate of the glass ribbon is controlled through each processing zone using a global control device. A first buffer zone is provided between the first processing zone and the second processing zone in which the glass substrate is supported in a first catenary between two, spaced-apart, payoff positions. A second buffer zone is provided between the second processing zone and the third processing zone in which the glass substrate is supported in a second catenary between two, spaced-apart, payoff positions.
Abstract:
Roller pairs and draw apparatus for processing glass ribbons are disclosed. The roller pairs applying force to a glass ribbon moving through the draw apparatus. The roller pairs include a first roller assembly and a second roller assembly positioned along opposite sides of the glass ribbon. A shaft of the second roller assembly is coupled to an actuation system that includes a repositionable support member allowing translation of the shaft of the second roller assembly in a direction transverse to the draw direction of the glass ribbon, a pneumatic actuator controlling a position of the contact wheel of the second roller assembly in the direction transverse to the draw direction of the glass ribbon, and a pneumatic reservoir in fluid communication with the pneumatic actuator delivering fluid at an elevated pressure to the pneumatic actuator.
Abstract:
Roller pairs and draw apparatus for processing glass ribbons are disclosed. The roller pairs applying force to a glass ribbon moving through the draw apparatus. The roller pairs include a first roller assembly and a second roller assembly positioned along opposite sides of the glass ribbon. A shaft of the second roller assembly is coupled to an actuation system that includes a repositionable support member allowing translation of the shaft of the second roller assembly in a direction transverse to the draw direction of the glass ribbon, a pneumatic actuator controlling a position of the contact wheel of the second roller assembly in the direction transverse to the draw direction of the glass ribbon, and a pneumatic reservoir in fluid communication with the pneumatic actuator delivering fluid at an elevated pressure to the pneumatic actuator.
Abstract:
A glass manufacturing apparatus is described herein that comprises a forming device configured to produce a glass ribbon and a pull roll device which draws the glass ribbon downward from the forming device. The pull roll device has a first roll apparatus, a second roll apparatus, and a third roll apparatus. The pull roll device is configured to at least independently operate the first roll apparatus and the second roll apparatus such that at least one of a first upstream pair of draw rolls rotates with a substantially constant torque and at least one of a first downstream pair of draw rolls rotates with a substantially constant angular velocity. In further examples, methods of manufacturing a glass ribbon are provided.