Abstract:
Strengthened glass articles having laser etched features, electronic devices, and methods of fabricating etched features in strengthened glass articles are disclosed. In one embodiment, a strengthened glass article includes a first strengthened surface layer and a second strengthened surface layer under a compressive stress and extending from a first surface and a second surface, respectively, of the strengthened glass article to a depth of layer, and a central region between the first strengthened surface layer and the second strengthened surface layer that is under tensile stress. The strengthened glass article further includes at least one etched feature formed by laser ablation within the first surface or the second surface having a depth that is less than the depth of layer and a surface roughness that is greater than a surface roughness of the first surface or second surface outside of the at least one etched feature.
Abstract:
A method for forming an initiation defect in a glass substrate to facilitate separating the glass substrate into a plurality of substrates is provided. The method includes providing the glass substrate and contacting a broad surface of the glass substrate with an abrasive surface thereby forming a field of initiation defects in the broad surface of the glass substrate. The field of initiation defects has a width of at least about three millimetres between outermost initiation defects. At least one initiation defect is heated with a laser source. The at least one initiation defect is cooled with a cooling fluid such that a crack initiates from the at least one initiation defect, the crack extending through a thickness of the glass substrate and propagating across the glass substrate to separate the glass substrate into the plurality of substrates.
Abstract:
Strengthened glass articles having laser etched features, electronic devices, and methods of fabricating etched features in strengthened glass articles are disclosed. In one embodiment, a strengthened glass article includes a first strengthened surface layer and a second strengthened surface layer under a compressive stress and extending from a first surface and a second surface, respectively, of the strengthened glass article to a depth of layer, and a central region between the first strengthened surface layer and the second strengthened surface layer that is under tensile stress. The strengthened glass article further includes at least one etched feature formed by laser ablation within the first surface or the second surface having a depth that is less than the depth of layer and a surface roughness that is greater than a surface roughness of the first surface or second surface outside of the at least one etched feature.
Abstract:
Systems and methods for laser-cutting thermally tempered substrates are disclosed. In one embodiment, a method of separating a thermally tempered substrate includes directing a laser beam focal line such that at least a portion of the laser beam focal line is within a bulk of the thermally tempered substrate. The focused pulsed laser beam is pulsed to form a sequence of pulse bursts comprising one or more sub-pulses. The laser beam focal line produces a damage track within the bulk of the tempered substrate along the laser beam focal line. Relative motion is provided between the focused pulsed laser beam and the tempered substrate such that the pulsed laser beam forms a sequence of damage tracks within the tempered substrate. Individual damage tracks of the sequence of damage tracks are separated by a lateral spacing, and one or more microcracks connect adjacent damage tracks of the sequence of damage tracks.
Abstract:
Methods and apparatus provide for: cutting a thin glass sheet along a curved cutting line, where the curve is divided into a plurality of line segments; applying a laser beam and continuously moving the laser beam along the cutting line; applying a cooling fluid simultaneously with the application of the laser beam in order to propagate a fracture in the glass sheet along the cutting line; and varying one or more cutting parameters as the laser beam moves from one of the plurality of line segments to a next one of the plurality of line segments, wherein the one or more cutting parameters include at least one of: (i) a power of the laser beam, (ii) a speed of the movement, (iii) a pressure of the cooling fluid, and (iv) a flow rate of the cooling fluid.
Abstract:
A method of separating a thin glass substrate from a carrier plate to which edge portions of the glass substrate are bonded, including irradiating a surface of the glass substrate with a pulsed laser beam, the laser beam moving along a plurality of parallel scan paths within a raster envelope, producing relative motion between the raster envelope and the glass substrate so that the raster envelope is moved along an irradiation path on the unbonded central portion. The irradiating produces ablation of the glass substrate along the irradiation path that forms a channel having a width W1 at the first surface greater than a width W2 at the second surface and extending through the thickness of the glass substrate, thus separating a thin glass sheet from the glass substrate-carrier plate assembly.