Abstract:
A distributed application framework, along with related systems and/or methods described herein, can intelligently place data using network knowledge. An exemplary method can include receiving data placement information from a distributed application that identifies a source node of data in a network and a list of potential destination nodes in the network for the distributed application to place the data; for each potential destination node, determining a network latency associated with transferring the data from the source node to the potential destination node using network metrics associated with the network; and sending the determined network latencies to the distributed application, such that the distributed application can assign the data to one of the potential destination nodes based on the determined network latencies.
Abstract:
The present disclosure relates to assignment or generation of reducer virtual machines after the “map” phase is substantially complete in MapReduce. Instead of a priori placement, distribution of keys after the “map” phase over the mapper virtual machines can be used to efficiently reducer tasks in virtualized cloud infrastructure like OpenStack. By solving a constraint optimization problem, reducer VMs can be optimally assigned to process keys subject to certain constraints. In particular, the present disclosure describes a special variable matrix. Furthermore, the present disclosure describes several possible cost matrices for representing the costs determined based on the key distribution over the mapper VMs (and other suitable factors).
Abstract:
The present disclosure relates to assignment or generation of reducer virtual machines after the “map” phase is substantially complete in MapReduce. Instead of a priori placement, distribution of keys after the “map” phase over the mapper virtual machines can be used to efficiently reducer tasks in virtualized cloud infrastructure like OpenStack. By solving a constraint optimization problem, reducer VMs can be optimally assigned to process keys subject to certain constraints. In particular, the present disclosure describes a special variable matrix. Furthermore, the present disclosure describes several possible cost matrices for representing the costs determined based on the key distribution over the mapper VMs (and other suitable factors).