Abstract:
Various implementations disclosed herein enable malleable routing for data packets. For example, in various implementations, a method of routing a type of data packets is performed by a device. In some implementations, the device includes a non-transitory memory and one or more processors coupled with the non-transitory memory. In some implementations, the method includes determining a routing criterion to transmit a set of data packets across a network. In some implementations, the method includes identifying network nodes and communication links in the network that satisfy the routing criterion. In some implementations, the method includes determining a route for the set of data packets through the network nodes and the communication links that satisfy the routing criterion. In some implementations, the method includes configuring the network nodes that are on the route with configuration information that allows the set of data packets to propagate along the route.
Abstract:
In one embodiment, an apparatus includes one or more processors and one or more computer-readable non-transitory storage media coupled to the one or more processors. The one or more computer-readable non-transitory storage media include instructions that, when executed by the one or more processors, cause the apparatus to perform operations including receiving a first type-length-value (TLV) associated with a winning flexible algorithm definition (FAD) from a first element of a network. The operations also include determining a security level for the winning FAD based on the TLV. The operations further include determining a data transmission route through a plurality of elements of the network based on the security level for the winning FAD.
Abstract:
Methods and systems are disclosed for detection of reroute occurrences in segment routing enabled networks. In one embodiment, a method includes receiving, at a first node in a communications network, a test message comprising a header, where the header comprises one or more segment identifiers. This embodiment of the method further includes detecting a first indicator of a rerouted test path for the message and sending an outgoing message to a node determined using the header, where sending the outgoing message comprises including in the outgoing message a second indicator that the test message has been rerouted. An embodiment of a system includes a network interface adapted for data communication with one or more nodes of a communications network and a processor operably coupled to the network interface and adapted to implement an embodiment of the method.
Abstract:
Techniques and mechanisms for compressing the size of SIDs to be smaller than a complete IPv6 address (or “micro SIDs”), and scaling micro SIDs across a multi-domain environment using micro SID-domain-blocks. Segment routing over IPv6 (SRv6) uses 128-bit IPv6 addresses as SIDs for segment routing. According to this disclosure, multiple SRv6 SIDs may be expressed in a compact format such that a 128-bit IPv6 address, such as the destination address field of the IPv6 header, may store multiple micro SIDs. Further, SID-domain-blocks may be assigned to each domain in a multi-domain network such that micro SIDs may be expressed in the context of a given domain, rather than being shared in the global multi-domain network. In this way, lists of domain-specific SIDs may be fully expressed in the IPv6 destination address of the packet to scale micro SID into large, multi-domain networks.
Abstract:
Multicast error detection and recovery may be provided. A join request for a multicast stream may be sent from a first network node to a second network node. The join request may be sent over a first link of a plurality of links between the first network node and the second network node. A redirect message indicating that the second network node cannot accommodate the join request may be received by the first network node from the second network node. In response to receiving the redirect message, the join request for the multicast stream may not be sent on a second link of the plurality of links by the first network node to the second network node. And in response to receiving the redirect message, an alternate upstream network node may be determined by the first network node to send the join request for the multicast stream to.
Abstract:
A method and system are disclosed for distributing (advertising) segment identifiers in network functions virtualization and/or software defined networking environments. An exemplary method includes receiving a route advertisement that includes a prefix with a forwarding address for a first network element and receiving a segment identifier (SID) advertisement that includes a prefix SID for the prefix. The route advertisement may be received from a second network element proxying control plane functions for the first network element. Reachability information for the first network element is updated based on the route advertisement and the SID advertisement.
Abstract:
An apparatus and method for resolving services to nodal segments. The method involves receiving an advertisement. The advertisement includes a service address associated with a service. The method further involves identifying an originator node for the service, where the originator node is associated with a nodal segment identifier. The method further involves updating the advertisement. Updating the advertisement involves adding information identifying the originator node to the advertisement.
Abstract:
The present technology is directed to signaling unreachability of a network device, more specifically, a prefix of the network device in network that utilizes route summarization. A pulse trigger agent can detect an unreachability of at least one Provider Edge (PE) device in a network domain of a network and determine that a route summarization is being used within the network where the unreachability of the at least one PE device is hidden by the route summarization. A pulse distribution agent can transmit a failure message informing other PE devices of the unreachability of the at least one PE device.
Abstract:
In one embodiment, a method by an apparatus of a Border Gateway Protocol-Link State (BGP-LS) environment includes receiving an attestation token from a first component and encoding the attestation token in a BGP-LS signaling message. The method further includes sending the BGP-LS signaling message with the encoded attestation token to a second component of the BGP-LS environment.
Abstract:
A method includes generating a first shortest path tree for traffic routing in a network, the first shortest path tree identifying a corresponding shortest path from the network node to other nodes in the network and generating a second shortest path tree for traffic routing after removing an element from the network. The second shortest path tree identifies a corresponding shortest path from the network node to the other nodes in the network with the element removed. A third shortest path tree is generated, which is a weighted version of the second shortest path tree with a weight value added to any node or link in the network sharing a SRLG value with the element removed from the network. Network traffic is enforced based on a comparison of the third shortest path tree with at least one of the first shortest path tree and the second shortest path tree.