Abstract:
In one embodiment, a device in a network aggregates values for a set of key performance indicators (KPIs) for a system the network to form a plurality of KPI states. The device associates a plurality of observed performance metric values from the system with the KPI states. The device constructs a machine learning-based decision tree. Internal vertices of the decision tree represent conditions for the plurality of observed performance metric values and leaves of the tree represent the KPI states. The device predicts a KPI state by using the machine learning-based decision tree to analyze live performance metric values streamed from the system. The device generates a proactive alert based on the predicted KPI state.
Abstract:
The present disclosure describes a method for virtual machine placement optimization based on generalized organizational scenarios. The method involves defining a variable matrix (wherein each entry of the variable matrix indicate whether a particular virtual machine is to be placed on a particular host server), a first set of variables (wherein each variable of the first set of variables indicate whether a particular host server has at least one virtual machine to be placed thereon), a second set of variables (wherein the second set of variables indicates for all possible pairs of host servers whether two particular host servers both have at least one virtual machine to be placed thereon). The method further involves determining a set of virtual machine to host server allocations by solving a constraints optimization problem over the first set of variables and the second set of variables based on a generalized organizational scenario.
Abstract:
A method for ranking detected anomalies is disclosed. The method includes generating a graph based on a plurality of rules, wherein the graph comprises nodes representing metrics identified in the rules, edges connecting nodes where metrics associated with connected nodes are identified in a given rule, and edge weights of the edges each representing a severity level assigned to the given rule. The method further includes ranking nodes of the graph based on the edge weights. The method further includes ranking detected anomalies based on the ranking of the nodes corresponding to the metrics associated with the detected anomalies.
Abstract:
The present disclosure describes a method for virtual machine placement optimization based on generalized organizational scenarios. The method involves defining a variable matrix (wherein each entry of the variable matrix indicate whether a particular virtual machine is to be placed on a particular host server), a first set of variables (wherein each variable of the first set of variables indicate whether a particular host server has at least one virtual machine to be placed thereon), a second set of variables (wherein the second set of variables indicates for all possible pairs of host servers whether two particular host servers both have at least one virtual machine to be placed thereon). The method further involves determining a set of virtual machine to host server allocations by solving a constraints optimization problem over the first set of variables and the second set of variables based on a generalized organizational scenario.