Abstract:
A method of increasing the control authority of redundant stability and control augmentation system (SCAS) actuators by utilizing feedback between systems such that one system may compensate for the position of a failed actuator of the other system. Each system uses an appropriate combination of reliable and unreliable inputs such that unreliable inputs cannot inappropriately utilize the increased authority. Each system may reconfigure itself when the other system actuator fails at certain positions so that the pilot or other upstream input maintains sufficient control authority of the aircraft.
Abstract:
A rotorcraft autopilot system includes a series actuator connecting a cockpit control component to a swashplate of a rotorcraft, the series actuator to modify a control input from the cockpit control component to the swashplate through a downstream control component. The rotorcraft autopilot system also includes a differential friction system connected to the cockpit control component, the differential friction system to control the series actuator to automatically adjust a position of the cockpit control component during rotorcraft flight based, in part, on a flight mode of the rotorcraft.
Abstract:
In some embodiments, a method of provided boosted actuation to an aircraft flight control device includes receiving an input from a pilot input device via a mechanical input member, providing mechanical energy to a driving member of a controlled-slippage actuator, and varying the strength of a magnetic field applied to a magnetorheological (MR) fluid disposed between the driving member and a driven member of the controlled-slippage actuator based on the relative positions of the mechanical input member and a mechanical output member that is in mechanical communication with the driven member and the aircraft flight control device.
Abstract:
According to one embodiment, a stability augmentation system includes a master linkage, a stability augmentation motor, and three linkages. A first linkage is coupled to the master linkage and operable to receive movements representative of pilot commands from a pilot command system. A second linkage is coupled between the stability augmentation motor and the master linkage and operable to receive movements representative of augmentation commands from the stability augmentation motor. A third linkage is coupled to the master linkage and operable to transmit movements representative of blade position commands to a blade control system in response to the movements representative of pilot commands and the movements representative of augmentation commands.