-
公开(公告)号:US12001746B2
公开(公告)日:2024-06-04
申请号:US17757305
申请日:2021-05-25
Applicant: BOE TECHNOLOGY GROUP CO., LTD. , PEKING UNIVERSITY
Inventor: Shuai Wang , Yadong Mu , Jie Feng , Yiming Bai , Xiangye Wei , Qiong Wu , Ge Ou , Nan Zhuang , Guoqiang Gong
IPC: G06F3/14 , G06T3/4038 , G06T5/00 , G06T7/194 , G06T7/70 , G06V10/25 , G06V10/764 , G06V40/10 , G09G3/00
CPC classification number: G06F3/14 , G06T3/4038 , G06T5/005 , G06T7/194 , G06T7/70 , G06V10/25 , G06V10/764 , G06V40/103 , G09G3/035 , G06V2201/07 , G09G2380/02
Abstract: An electronic apparatus and a method for displaying an image on a display device are disclosed. The electronic apparatus includes a display device; an image acquisition device configured to acquire a surrounding image of the display device; and a processor configured to: determine a background image of the display device according to the surrounding image; acquire a target range and a target object in the background image; determine a target image according to the background image, the target range and the target object; and control the display device to display the target image, wherein the target image excludes the target object.
-
12.
公开(公告)号:US11887303B2
公开(公告)日:2024-01-30
申请号:US17423439
申请日:2020-08-17
Inventor: Yongming Shi , Qiong Wu , Ge Ou , Chun Wang
CPC classification number: G06T7/0012 , G06V10/82 , G16H30/40 , G06T2207/20081 , G06T2207/20084 , G06T2207/30096
Abstract: An image processing model generation method includes: inputting at least one training sample lesion image into an initial image processing model, the initial image processing model including a classification layer and a marking layer; calling the classification layer; calling the marking layer; obtaining a loss value of the at least one training sample lesion image in the initial image processing model; determining whether the loss value is within a preset range; if not, updating parameters of the initial image processing model, an image processing model with updated parameters being used as an initial image processing model in next training; and repeating above steps until the loss value is within the preset range.
-