Abstract:
A system and method with increased sensitivity to microorganism growth. The system includes signal processing electronic circuit connected to a consumable or vessel through two or more electrodes that fully penetrate the vessel and are in contact with the fluid contents. The electronic circuit is configured to detect a component of the total impedance of the sample, specifically the “out-of-phase” or imaginary reactance component, which has a sensitive response to organism growth in a frequency-dependent manner. The system detects changes in both the composition of charged molecules in the liquid matrix and the number of microorganisms based on monitoring the sample for change in this parameter. This results in a 5-70% reduction in time-to-detection (TTD). The system and method detect organisms in a plurality of vessel shapes, volumes, and matrix (or media) formats. The electrodes are fully immersed in a continuous body of liquid sample. The distance between electrodes may be adjusted or tuned to fit the needs of the vessel. The voltage inputs can also be adjusted to allow proper detection of the contents within the vessel.
Abstract:
Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism (s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
Abstract:
Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism (s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.