Abstract:
Techniques and devices for acquiring and processing timelapse video are described. The techniques use exposure bracketing to provide a plurality of images at each acquisition time. Images of the plurality are selected to minimize flicker in a timelapse video encoded from the selected images.
Abstract:
The invention relates to systems, methods, and computer readable media for responding to a user snapshot request by capturing anticipatory pre-snapshot image data as well as post-snapshot image data. The captured information may be used, depending upon the embodiment, to create archival image information and image presentation information that is both useful and pleasing to a user. The captured information may automatically be trimmed or edited to facilitate creating an enhanced image, such as a moving still image. Varying embodiments of the invention offer techniques for trimming and editing based upon the following: exposure, brightness, focus, white balance, detected motion of the camera, substantive image analysis, detected sound, image metadata, and/or any combination of the foregoing.
Abstract:
The invention relates to systems, methods, and computer readable media for responding to a user snapshot request by capturing anticipatory pre-snapshot image data as well as post-snapshot image data. The captured information may be used, depending upon the embodiment, to create archival image information and image presentation information that is both useful and pleasing to a user. The captured information may automatically be trimmed or edited to facilitate creating an enhanced image, such as a moving still image. Varying embodiments of the invention offer techniques for trimming and editing based upon the following: exposure, brightness, focus, white balance, detected motion of the camera, substantive image analysis, detected sound, image metadata, and/or any combination of the foregoing.
Abstract:
The invention relates to systems, methods, and computer readable media for responding to a user snapshot request by capturing anticipatory pre-snapshot image data as well as post-snapshot image data. The captured information may be used, depending upon the embodiment, to create archival image information and image presentation information that is both useful and pleasing to a user. The captured information may automatically be trimmed or edited to facilitate creating an enhanced image, such as a moving still image. Varying embodiments of the invention offer techniques for trimming and editing based upon the following: exposure, brightness, focus, white balance, detected motion of the camera, substantive image analysis, detected sound, image metadata, and/or any combination of the foregoing.
Abstract:
Techniques to permit a digital image capture device to stabilize a video stream in real-time (during video capture operations) are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. (Capturing a larger image than is displayed creates a buffer of pixels around the edge of an image; overscan is the term given to this buffer of pixels.) More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. This look-ahead and look-behind capability permits a smoother stabilizing regime with fewer abrupt adjustments.
Abstract:
Techniques to permit a digital image capture device to stabilize a video stream in real-time (during video capture operations) are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. (Capturing a larger image than is displayed creates a buffer of pixels around the edge of an image; overscan is the term given to this buffer of pixels.) More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. This look-ahead and look-behind capability permits a smoother stabilizing regime with fewer abrupt adjustments.
Abstract:
Techniques and devices for acquiring and processing timelapse video are described. The techniques use exposure bracketing to provide a plurality of images at each acquisition time. Images of the plurality are selected to minimize flicker in a timelapse video encoded from the selected images.
Abstract:
The invention relates to systems, methods, and computer readable media for responding to a user snapshot request by capturing anticipatory pre-snapshot image data as well as post-snapshot image data. The captured information may be used, depending upon the embodiment, to create archival image information and image presentation information that is both useful and pleasing to a user. The captured information may automatically be trimmed or edited to facilitate creating an enhanced image, such as a moving still image. Varying embodiments of the invention offer techniques for trimming and editing based upon the following: exposure, brightness, focus, white balance, detected motion of the camera, substantive image analysis, detected sound, image metadata, and/or any combination of the foregoing.
Abstract:
Techniques to improve a digital image capture device's ability to stabilize a video stream are presented. According to some embodiments, improved stabilization of captured video frames is provided by intelligently harnessing the complementary effects of both optical image stabilization (OIS) and electronic image stabilization (EIS). In particular, OIS may be used to remove intra-frame motion blur that is typically lower in amplitude and dominates with longer integration times, while EIS may be used to remove residual unwanted frame-to-frame motion that is typically larger in amplitude. The techniques disclosed herein may also leverage information provided from the image capture device's OIS system to perform improved motion blur-aware video stabilization strength modulation, which permits better video stabilization performance in low light conditions, where integration times tend to be longer, thus leading to a greater amount of motion blurring in the output stabilized video.
Abstract:
Techniques to permit a digital image capture device to stabilize a video stream in real-time (during video capture operations) are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. (Capturing a larger image than is displayed creates a buffer of pixels around the edge of an image; overscan is the term given to this buffer of pixels.) More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. This look-ahead and look-behind capability permits a smoother stabilizing regime with fewer abrupt adjustments.