Abstract:
A method of grouping data associated with substrates undergoing a process step of a manufacturing process is disclosed. The method includes obtaining first data associated with substrates before being subject to the process step and obtaining a plurality of sets of second data associated with substrates after being subject to the process step, each set of second data being associated with a different value of a characteristic of the first data. A distance metric is determined which describes a measure of distance between the sets of second data, and the second data is grouped based on a property of the distance metric.
Abstract:
A process of calibrating parameters of a stack model used to simulate the performance of measurement structures in a patterning process, the process including: obtaining a stack model used in a simulation of performance of measurement structures; obtaining calibration data indicative of performance of the measurement structures; calibrating parameters of the model by, until a termination condition occurs, repeatedly: simulating performance of the measurement structures with the simulation using a candidate model; approximating the simulation, based on a result of the simulation, with a surrogate function; and selecting a new candidate model based on the approximation.
Abstract:
A lithography system configured to apply a pattern to a substrate, the system including a lithography apparatus configured to expose a layer of the substrate according to the pattern, and a machine learning controller configured to control the lithography system to optimize a property of the pattern, the machine learning controller configured to be trained on the basis of a property measured by a metrology unit configured to measure the property of the exposed pattern in the layer and/or a property associated with exposing the pattern onto the substrate, and to correct lithography system drift by adjusting one or more selected from: the lithography apparatus, a track unit configured to apply the layer on the substrate for lithographic exposure, and/or a control unit configured to control an automatic substrate flow among the track unit, the lithography apparatus, and the metrology unit.
Abstract:
A fault in a subject production apparatus which is suspected of being a deviating machine, is identified based on whether it is possible to train a machine learning model to distinguish between first sensor data derived from the subject production apparatus, and second sensor data derived from one or more other production apparatuses which are assumed to be behaving normally. Thus, the discriminative ability of the machine learning model is used as an indicator to discriminate between a faulty machine and the population of healthy machines.
Abstract:
A method for determining an inspection strategy for at least one substrate, the method including: quantifying, using a prediction model, a compliance metric value for a compliance metric relating to a prediction of compliance with a quality requirement based on one or both of pre-processing data associated with the substrate and any available post-processing data associated with the at least one substrate; and deciding on an inspection strategy for the at least one substrate, based on the compliance metric value, an expected cost associated with the inspection strategy and at least one objective value describing an expected value of the inspection strategy in terms of at least one objective relating to the prediction model.
Abstract:
In a lithographic process, product units such as semiconductor wafers are subjected to lithographic patterning operations and chemical and physical processing operations. Alignment data or other measurements are made at stages during the performance of the process to obtain object data representing positional deviation or other parameters measured at points spatially distributed across each unit. This object data is used to obtain diagnostic information by performing a multivariate analysis to decompose a set of vectors representing the units in the multidimensional space into one or more component vectors. Diagnostic information about the industrial process is extracted using the component vectors. The performance of the industrial process for subsequent product units can be controlled based on the extracted diagnostic information.
Abstract:
A method of optimizing an apparatus for multi-stage processing of product units such as wafers, the method includes: receiving object data representing one or more parameters measured across the product units and associated with different stages of processing of the product units; and determining fingerprints of variation of the object data across the product units, the fingerprints being associated with different respective stages of processing of the product units. The fingerprints may be determined by decomposing the object data into components using principal component analysis for each different respective stage; analyzing commonality of the fingerprints through the different stages to produce commonality results; and optimizing an apparatus for processing product units based on the commonality results.
Abstract:
A lithographic process is performed on a set of semiconductor substrates consisting of a plurality of substrates, As part of the process, the set of substrates is partitioned into a number of subsets. The partitioning may be based on a set of characteristics associated with a first layer on the substrates. A fingerprint of a performance parameter is then determined for at least one substrate of the set of substrates. Under some circumstances, the fingerprint is determined for one substrate of each subset of substrates. The fingerprint is associated with at least the first layer. A correction for the performance parameter associated with an application of a subsequent layer is then derived, the derivation being based on the determined fingerprint and the partitioning of the set of substrates.
Abstract:
Generating a control output for a patterning process is described. A control input is received. The control input is for controlling the patterning process. The control input includes one or more parameters used in the patterning process. The control output is generated with a trained machine learning mod& based on the control input, The machine learning model is trained with training data generated from simulation of the patterning process and/or actual process data, The training data includes 1) a plurality of training control inputs corresponding to a plurality of operational conditions of the patterning process, where the plurality of operational conditions of the patterning process are associated with operational condition specific behavior of the patterning process over time, and 2) training control outputs generated using a physical model based on the training control inputs.
Abstract:
In a lithographic process, product units such as semiconductor wafers are subjected to lithographic patterning operations and chemical and physical processing operations. Alignment data or other measurements are made at stages during the performance of the process to obtain object data representing positional deviation or other parameters measured at points spatially distributed across each unit. This object data is used to obtain diagnostic information by performing a multivariate analysis to decompose a set of vectors representing the units in the multidimensional space into one or more component vectors. Diagnostic information about the industrial process is extracted using the component vectors. The performance of the industrial process for subsequent product units can be controlled based on the extracted diagnostic information.