Abstract:
User interface navigation on a personal electronics device based on movements of a crown is disclosed. The device can select an appropriate level of information arranged along a z-axis for display based on crown movement. The navigation can be based on an angular velocity of the crown.
Abstract:
In some embodiments, a device displays functionality information in response to receiving an indication of a first input for which a contact meets functionality display criteria. In some embodiments, a device generates a user interface that includes a navigation bar including images from different positions in a respective content item, and a representation of an adjacent content item. In some embodiments, a device moves a selection-indicator in a user interface by a predefined amount in response to receiving an indication of a first input that meets unitary movement criteria. In some embodiments, a device interprets movement of a contact of an input based at least in part on a grip of a user. In some embodiments, a device displays a plurality of character selection options when a text entry field is not tolerant of character ambiguity and a first input corresponds to a plurality of candidate characters.
Abstract:
Systems and processes for manipulating a graphical user interface are disclosed. One process can include receiving user input through a crown to rotate a virtual object. The process includes selecting a surface of the object from among the multiple surfaces of the object in response to determining that the crown rotation exceeded a speed threshold.
Abstract:
The present disclosure relates to user interfaces for manipulating user interface objects. A device, including a display and a rotatable input mechanism, is described in relation to manipulating user interface objects. In some examples, the manipulation of the object is a scroll, zoom, or rotate of the object. In other examples, objects are selected in accordance with simulated magnetic properties.
Abstract:
An electronic device with a display and a touch-sensitive surface displays a user interface with a plurality of content units, where the content units are arranged along a first axis in the user interface, and a respective content unit is associated with corresponding metadata. The device detects a contact on the touch-sensitive surface and a first movement of the contact. In response to detecting the first movement of the contact, the device moves a first set of one or more of the content units perpendicular to the first axis in the user interface in accordance with the first movement, and for one or more respective content units in the first set of content units, the device displays metadata for the respective content unit adjacent to the respective content unit that was not displayed immediately prior to detecting the first movement of the contact.
Abstract:
In some embodiments, a device displays functionality information in response to receiving an indication of a first input for which a contact meets functionality display criteria. In some embodiments, a device generates a user interface that includes a navigation bar including images from different positions in a respective content item, and a representation of an adjacent content item. In some embodiments, a device moves a selection-indicator in a user interface by a predefined amount in response to receiving an indication of a first input that meets unitary movement criteria. In some embodiments, a device interprets movement of a contact of an input based at least in part on a grip of a user. In some embodiments, a device displays a plurality of character selection options when a text entry field is not tolerant of character ambiguity and a first input corresponds to a plurality of candidate characters.
Abstract:
The present disclosure relates to user interfaces for receiving user input. In some examples, a device determines which user input technique a user has accessed most recently, and displays the corresponding user interface. In some examples, a device scrolls through a set of information on the display. When a threshold criteria is satisfied, the device displays an index object fully or partially overlaying the set of information. In some examples, a device displays an emoji graphical object, which is visually manipulated based on user input. The emoji graphical object is transmitted to a recipient. In some examples, a device displays paging affordances that enlarge and allow a user to select a particular page of a user interface. In some examples, the device displays user interfaces for various input methods, including multiple emoji graphical objects. In some examples, a keyboard is displays for receiving user input.
Abstract:
In some embodiments, a device displays functionality information in response to receiving an indication of a first input for which a contact meets functionality display criteria. In some embodiments, a device generates a user interface that includes a navigation bar including images from different positions in a respective content item, and a representation of an adjacent content item. In some embodiments, a device moves a selection-indicator in a user interface by a predefined amount in response to receiving an indication of a first input that meets unitary movement criteria. In some embodiments, a device interprets movement of a contact of an input based at least in part on a grip of a user. In some embodiments, a device displays a plurality of character selection options when a text entry field is not tolerant of character ambiguity and a first input corresponds to a plurality of candidate characters.
Abstract:
The present disclosure relates to varying threshold and feedback based on activity. The present disclosure includes receiving an input having an input intensity. Further, in response to receiving the input and in accordance with a determination that an electronic device is in a second activity state different from a first activity state, determining whether the input intensity of the input meets or exceeds a second characteristic intensity threshold different from a first characteristic intensity threshold. Additionally, in accordance with a determination that the input intensity of the input meets or exceeds the second characteristic intensity threshold, performing the application process and/or providing a haptic feedback of a second feedback level different from a first feedback level.
Abstract:
Systems and processes for manipulating a graphical user interface are disclosed. One process can include receiving user input through a crown to rotate a virtual object. The process includes selecting a surface of the object from among the multiple surfaces of the object in response to determining that the crown rotation exceeded a speed threshold.