GENERATING SCENE GRAPHS FROM DIGITAL IMAGES USING EXTERNAL KNOWLEDGE AND IMAGE RECONSTRUCTION

    公开(公告)号:US20220309762A1

    公开(公告)日:2022-09-29

    申请号:US17805289

    申请日:2022-06-03

    Applicant: Adobe Inc.

    Abstract: Methods, systems, and non-transitory computer readable storage media are disclosed for generating semantic scene graphs for digital images using an external knowledgebase for feature refinement. For example, the disclosed system can determine object proposals and subgraph proposals for a digital image to indicate candidate relationships between objects in the digital image. The disclosed system can then extract relationships from an external knowledgebase for refining features of the object proposals and the subgraph proposals. Additionally, the disclosed system can generate a semantic scene graph for the digital image based on the refined features of the object/subgraph proposals. Furthermore, the disclosed system can update/train a semantic scene graph generation network based on the generated semantic scene graph. The disclosed system can also reconstruct the image using object labels based on the refined features to further update/train the semantic scene graph generation network.

    MITIGATING PEOPLE DISTRACTORS IN IMAGES

    公开(公告)号:US20220058777A1

    公开(公告)日:2022-02-24

    申请号:US16997364

    申请日:2020-08-19

    Applicant: Adobe Inc.

    Abstract: Systems, methods, and software are described herein for removing people distractors from images. A distractor mitigation solution implemented in one or more computing devices detects people in an image and identifies salient regions in the image. The solution then determines a saliency cue for each person and classifies each person as wanted or as an unwanted distractor based at least on the saliency cue. An unwanted person is then removed from the image or otherwise reduced from the perspective of being an unwanted distraction.

    LEARNING COPY SPACE USING REGRESSION AND SEGMENTATION NEURAL NETWORKS

    公开(公告)号:US20210216824A1

    公开(公告)日:2021-07-15

    申请号:US17215067

    申请日:2021-03-29

    Applicant: Adobe Inc.

    Abstract: Techniques are disclosed for characterizing and defining the location of a copy space in an image. A methodology implementing the techniques according to an embodiment includes applying a regression convolutional neural network (CNN) to an image. The regression CNN is configured to predict properties of the copy space such as size and type (natural or manufactured). The prediction is conditioned on a determination of the presence of the copy space in the image. The method further includes applying a segmentation CNN to the image. The segmentation CNN is configured to generate one or more pixel-level masks to define the location of copy spaces in the image, whether natural or manufactured, or to define the location of a background region of the image. The segmentation CNN may include a first stage comprising convolutional layers and a second stage comprising pairs of boundary refinement layers and bilinear up-sampling layers.

    Object Detection In Images
    14.
    发明申请

    公开(公告)号:US20200272822A1

    公开(公告)日:2020-08-27

    申请号:US16874114

    申请日:2020-05-14

    Applicant: Adobe Inc.

    Abstract: In implementations of object detection in images, object detectors are trained using heterogeneous training datasets. A first training dataset is used to train an image tagging network to determine an attention map of an input image for a target concept. A second training dataset is used to train a conditional detection network that accepts as conditional inputs the attention map and a word embedding of the target concept. Despite the conditional detection network being trained with a training dataset having a small number of seen classes (e.g., classes in a training dataset), it generalizes to novel, unseen classes by concept conditioning, since the target concept propagates through the conditional detection network via the conditional inputs, thus influencing classification and region proposal. Hence, classes of objects that can be detected are expanded, without the need to scale training databases to include additional classes.

    IDENTIFYING VISUALLY SIMILAR DIGITAL IMAGES UTILIZING DEEP LEARNING

    公开(公告)号:US20200210763A1

    公开(公告)日:2020-07-02

    申请号:US16817234

    申请日:2020-03-12

    Applicant: ADOBE INC.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for utilizing a deep neural network-based model to identify similar digital images for query digital images. For example, the disclosed systems utilize a deep neural network-based model to analyze query digital images to generate deep neural network-based representations of the query digital images. In addition, the disclosed systems can generate results of visually-similar digital images for the query digital images based on comparing the deep neural network-based representations with representations of candidate digital images. Furthermore, the disclosed systems can identify visually similar digital images based on user-defined attributes and image masks to emphasize specific attributes or portions of query digital images.

    DETERMINING COLORS OF OBJECTS IN DIGITAL IMAGES

    公开(公告)号:US20220237826A1

    公开(公告)日:2022-07-28

    申请号:US17658799

    申请日:2022-04-11

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to a color classification system that accurately classifies objects in digital images based on color. In particular, in one or more embodiments, the color classification system utilizes a multidimensional color space and one or more color mappings to match objects to colors. Indeed, the color classification system can accurately and efficiently detect the color of an object utilizing one or more color similarity regions generated in the multidimensional color space.

    Object detection in images
    20.
    发明授权

    公开(公告)号:US11256918B2

    公开(公告)日:2022-02-22

    申请号:US16874114

    申请日:2020-05-14

    Applicant: Adobe Inc.

    Abstract: In implementations of object detection in images, object detectors are trained using heterogeneous training datasets. A first training dataset is used to train an image tagging network to determine an attention map of an input image for a target concept. A second training dataset is used to train a conditional detection network that accepts as conditional inputs the attention map and a word embedding of the target concept. Despite the conditional detection network being trained with a training dataset having a small number of seen classes (e.g., classes in a training dataset), it generalizes to novel, unseen classes by concept conditioning, since the target concept propagates through the conditional detection network via the conditional inputs, thus influencing classification and region proposal. Hence, classes of objects that can be detected are expanded, without the need to scale training databases to include additional classes.

Patent Agency Ranking