Abstract:
Disclosed is a negative active material for a rechargeable lithium battery is provided that includes composite particles including an amorphous or semi-crystalline carbon matrix, and crystalline graphite powder particles having an average particle diameter of 0.2 to 3 μm dispersed in the matrix. The composite particles have an average particle diameter of 4 to 40 μm. A method of preparing the same and a rechargeable lithium battery including the negative active material are also disclosed.
Abstract:
Disclosed herein is a prompt gamma-ray detection apparatus for analyzing chemical materials using femtosecond pulse laser-induced neutrons, which can be effectively used in the nondestructive inspection of various materials, such as metals, coal, cement, radioactive materials and the like as well as explosives and chemical materials, and which can provide better measurement results for the analysis of basic materials, and a method of measuring prompt gamma-rays using the apparatus. The prompt gamma-ray detection apparatus is advantageous because it can non-destructively analyze the elements in a chemical sample using a femtosecond pulse laser-induced neutron generator that solves the problems of an atomic reactor for research or a radioactive isotope as a neutron radiation source.
Abstract:
The present invention relates to a negative active material for a rechargeable lithium battery, a method of manufacturing the negative active material, and a rechargeable lithium battery including the negative active material. The negative active material includes a sphere-shaped first graphite particle that a first particle precursor, a flake-shaped graphite piece, is linked to each other; and at least one second particle dispersed between the flake-shaped graphite pieces inside the sphere-shaped first graphite particle and selected from the group consisting of at least one element particle selected from the group consisting of Si, Sn, Al, Ge, Pb, and combinations thereof; at least one element compound particle selected from the group consisting of Si, Sn, Al, Ge, Pb, and combinations thereof; a composite particle including at least one element selected from the group consisting of Si, Sn, Al, Ge, Pb, and combinations thereof; a carbon composite particle including at least one element selected from the group consisting of Si, Sn, Al, Ge, Pb, and combinations thereof; and a combination particle thereof.
Abstract:
A thin film for an anode of a lithium secondary battery having a current collector and an anode active material layer formed thereon is provided. The anode active material layer is a multi-layered thin film formed by stacking a silver (Ag) layer and a silicon-metal (Si-M) layer having silicon dispersed in a base made from metal reacting with silicon while not reacting with lithium. The cycle characteristic of the thin film for an anode can be improved by suppressing the volumetric expansion and shrinkage of Si occurring during charging/discharging cycles. Thus, a lithium secondary battery with improved life characteristics by employing the thin film for an anode, which greatly improves the chemical, mechanical stability of the interface between an electrode and an electrolyte.
Abstract:
The present invention relates to a diffusion barrier layer for a semiconductor device and fabrication method thereof. The diffusion barrier layer according to the present invention is fabricated by forming a diffusion barrier layer containing a refractory metal material and an insulating material on an insulating layer and in a contact hole, wherein the insulating layer being partially etched to form the contact hole, is formed on a semiconductor substrate; and annealing the diffusion barrier layer. Therefore, an object of the present invention is to provide a diffusion barrier layer for a semiconductor device, which is of an amorphous or microcrystalline state and thermodynamically stable even at a high temperature since an insulating material is bonded to a refractory metal material in the diffusion barrier layer.
Abstract:
The present invention provides a flame retardant resin composition, or more particularly, a flame retardant polypropylene resin composition which comprises polypropylene having improved flow melt characteristics, flame retardants, a flame retardant aid, and a tetrafluoroethylene polymer. The composition of the present invention has high melt tension, without deterioration of the mechanical properties of flame retardant polypropylene, and drastically enhanced characteristics of shape maintenance and a flaming drip during burning.
Abstract:
The present invention relates to a fabric having an improved winding property, and more particularly to a fabric having an improved winding property, which simultaneously has an excellent winding property and excellent mechanical properties and exhibits an effect of preventing dye migration in fabric coating, and a commodity including the same.
Abstract:
The present invention relates to a high barrier multilayer film for functional medical solution product comprising in order, an outer layer comprising polyethyleneterephthalate deposited inorganic oxide thereon; a first adhesive layer comprising ester type polyurethane; a first intermediate layer comprising ethylene vinyl alcohol copolymer; a second adhesive layer comprising ester type polyurethane; a second intermediate layer comprising polyamide; a third adhesive layer comprising ester type polyurethane; and an inner layer comprising propylene-based polymer. The multilayer film has the merits of improved transparency, heat resistance, sealing property, durability, competitive price, oxygen barrier property and less pinhole, so that may be applied to a outer bag of pouch type container of medical solution.
Abstract:
The present invention relates to a method for improving charge/discharge cycle characteristics of a lithium secondary battery using a Si based anode active material, the method comprising surface-treating a surface of an anode current collector to have specific morphology, and preferably vapor-depositing a silicon film, as the anode active material by sputtering under application of bias voltage to the surface-treated anode current collector, and/or disposing an adhesive layer between the surface-treated anode current collector and silicon film, so as to reinforce bondability between the anode current collector and active material, ultimately leading to improvement of charge/discharge characteristics of the battery.
Abstract:
A wafer pattern inspecting apparatus and method are disclosed. The apparatus comprises an image sensor to acquire image data from a reference die and a sample die, an external memory to store the image data, an encoder to compress the data, a decoder to decompress the data, an internal memory device to store the compressed image data of the reference die, an arithmetic module to process the image data for the reference dies to extract a reference image data, a reference storage memory to store compressed reference image data, and a comparison module to compare the sample die image data with the reference image data to an extract defect data for the sample die.