Abstract:
A display device includes a signal controller processing an input image signal and an input control signal and outputting an image signal and a control signal. A gray voltage generator generates reference gray voltages. The control signal includes a selection signal. A data driver generates gray voltages based on the reference gray voltage, selects a gray voltage corresponding to the image signal among the generated gray voltages, and applies the selected gray voltage to a pixel as a first data voltage. The data driver applies a black data voltage corresponding to a black image to the pixel according to the selection signal.
Abstract:
A signal transfer member for a liquid crystal display (LCD) apparatus includes a power line for receiving power from an external source and for driving a semiconductor chip disposed on the transfer member or the display apparatus. The power line is bent so as to incorporate a serpentine structure, which enables the length of the power line to be easily adjusted and results in the line being longer than a power line formed with a relatively straight structure. Accordingly, the length of the power line can be adjusted to take into account the respective impedances of the chip and the external source so as to suppress electromagnetic waves in the power line. This prevents the creation of noise, distortion of signals, damage to the semiconductor chip, and disconnection of the input interconnection thereof that are caused by the electromagnetic waves, so that product yields are thereby improved.
Abstract:
The present invention discloses a data driving method, the method including receiving data corresponding to a plurality of pixels. Received data are converted into data voltages of an analog type to be output to a plurality of data lines. One of a first data voltage and a last data voltage of the data voltages is output to a dummy data line adjacent to the data lines.
Abstract:
A signal transfer member for a liquid crystal display (LCD) apparatus includes a power line for receiving power from an external source and for driving a semiconductor chip disposed on the transfer member or the display apparatus. The power line is bent so as to incorporate a serpentine structure, which enables the length of the power line to be easily adjusted and results in the line being longer than a power line formed with a relatively straight structure. Accordingly, the length of the power line can be adjusted to take into account the respective impedances of the chip and the external source so as to suppress electromagnetic waves in the power line. This prevents the creation of noise, distortion of signals, damage to the semiconductor chip, and disconnection of the input interconnection thereof that are caused by the electromagnetic waves, so that product yields are thereby improved.
Abstract:
A photoresist pattern is formed, without being exposed, by using photoresist having a residual layer proportion characteristic by which the photoresist dissolves at a suitable rate in a developing solution. First, a target layer to be patterned and a photoresist layer are sequentially formed on a substrate having a pattern that defines a step on the substrate. Some of the photoresist layer is treated with the developing solution, to thereby form a photoresist pattern whose upper surface is situated beneath the step and hence, exposes part of the target layer. Next, the exposed part of the target layer, and the photoresist pattern are removed. A silicidation process may be carried out thereafter on the area(s) from which the target layer has been removed. The method is relatively simple because it does not involve an exposure process. Furthermore, the method can be used to manufacture devices having very fine linewidths, i.e., a small design rule, because it is not subject to the misalignment errors which can occur during a conventional exposure process.
Abstract:
A seismic isolation bearing device is disclosed in which a laminated elastic rubber-steel bearing adapted to isolate horizontal seismic loading cooperates with a vertical isolation device employing a compression spring, or equivalent device, effective for isolating vertical seismic loadings whereby a three dimensional seismic isolation device is effective to isolate both vertical and horizontal seismic loadings to insure the structural integrity of a superstructure against damage induced by seismic events. The isolation device formed of an isolation cylinder fixed to the structure, with an upper fixing plate vertically movable within the cylinder. A plurality of steel balls being disposed within a space formed between the perimeter of the upper fixing plate and the interior wall of the isolation cylinder. The balls facilitating the guided relative vertical movement between the upper fixing plate and the isolation cylinder. A compression spring within the cylinder and between the upper fixing plate and the structure serves to dampen the vertically imposed seismic loads.
Abstract:
The present invention discloses a data driving method, the method including receiving data corresponding to a plurality of pixels. Received data are converted into data voltages of an analog type to be output to a plurality of data lines. One of a first data voltage and a last data voltage of the data voltages is output to a dummy data line adjacent to the data lines.
Abstract:
A display device includes a signal controller processing an input image signal and an input control signal and outputting an image signal and a control signal. A gray voltage generator generates reference gray voltages. The control signal includes a selection signal. A data driver generates gray voltages based on the reference gray voltage, selects a gray voltage corresponding to the image signal among the generated gray voltages, and applies the selected gray voltage to a pixel as a first data voltage. The data driver applies a black data voltage corresponding to a black image to the pixel according to the selection signal.
Abstract:
In a method of driving a display panel, a voltage of a first polarity with respect to a reference voltage is outputted to an n-th data line and an (n+1)-th data line (‘n’ is a natural number), respectively, and a voltage of a second polarity with respect to the reference voltage is outputted to an (n+2)-th data line and an (n+3)-th data line, respectively, during an N-th frame (‘N’ is a natural number). Then, a voltage of the first polarity is outputted to the n-th data line, a voltage of the second polarity is outputted to the (n+1)-th data line and the (n+2)-th data line, respectively, and a voltage of the first polarity is outputted to the (n+3)-th data line, during an (N+1)-th frame.
Abstract:
A fabricating method of a customized mask includes forming first patterns in a mold structure, forming second patterns in the mold structure using initial masks, the mold structure having the first patterns formed therein, measuring overlap failure between the first patterns and the second patterns, and fabricating customized masks by compensating for pattern positions of the initial masks based on the measuring results, wherein compensating for the pattern positions of the initial masks includes shifting positions of at least some patterns of the initial masks according to shift directions and sizes of at least some of the first patterns.