摘要:
A method for determining a structure in volumetric data includes determining an anisotropic scale-space for a local region around a given spatial local maximum, determining L-normalized scale-space derivatives in the anisotropic scale-space, and determining the presence of noise in the volumetric data and upon determining noise in the volumetric data, determining the structure by a most-stable-over-scales determination, and upon determining noise below a desirable level, determining the structure by one of the most-stable-over-scales determination and a maximum-over-scales determination.
摘要:
A method for registering a medical image includes acquiring a first medical image of a subject. One or more simulated medical images are synthesized based on the acquired first medical image. One or more matching functions are trained using the first medical image and the simulated medical images. A second medical image of the subject is acquired. The first medical image and the second medical image are registered using the one or more trained matching functions.
摘要:
A method for segmenting a digitized image includes providing a digitized volumetric image comprising a plurality of intensities corresponding to a domain of points in an N-dimensional space, identifying a target structure in said image, forming a window about said target structure whose size is a function of the target scale, and performing a joint space-intensity-likelihood ratio test at each point within said window to determine whether each said point is within said target structure.
摘要:
A system and method for loading a timepoint for comparison with a previously loaded timepoint are provided. The method comprises: selecting an image dataset of the timepoint; validating the image dataset of the timepoint against a validated image dataset of the previously loaded timepoint; and constructing a volume based on the image dataset of the timepoint.
摘要:
A method and apparatus for providing a high-quality representation of a volume having a real-time 3-D reconstruction therein of movement of an object, wherein the real-time movement of the object is determined using a lower-quality representation of only a portion of the volume. Movement of the object is detected in a 2-D X-ray fluoroscopy image and is reconstructed in a 3-D angiography (X-ray) reconstruction. Using a common C-arm and X-ray geometry advantageously, the 2-D and 3-D data representative of vascular structures of a patient is acquired, thereby facilitating the merger of the real-time 2-D fluoroscopic images with the 3-D reconstructed vascular structures in a common 3-D-visualization framework. Also described is a technique for 3-D reconstruction of a catheter from real-time 2-D fluoroscopic images and stored 3-D angiography data, so as to present the 3-D reconstructed catheter in the common coordinate frame. The merger of 3-D angiography image representations acquired with other modalities, such as MR or CT, is also disclosed.
摘要:
A method allowing for fast mapping between a content identifier (ID) for a media content file and the file path of said media content file includes: dividing a plurality of characters making up the contend ID into a plurality of ordered subsections separated by a separator character, correlating at least one of the subsections with a directory in an electronic file system, and correlating the last of the subsections with a name of the media content file, the media content file being located within a directory correlated with a preceding subsection.
摘要:
A system for storing content available for streaming includes a storage tier with a plurality of storage clusters, each of the storage clusters having at least one server, the storage clusters collectively storing multiple media content files; a streaming tier coupled to the storage tier, the streaming tier having multiple streaming servers, the streaming tier being configured to stream data over a network faster than the storage tier is able to stream the data over the network; and a computer-implemented synchronization module configured to analyze traffic statistics associated with a media content file stored on the storage tier and selectively replicate the media content file on the streaming tier based on the traffic statistics.
摘要:
Providing media content includes storing a plurality of media files on a storage tier having at least one storage cluster, each storage cluster having at least one server, replicating at least some of the media files stored on the storage tier on at least one streaming server of a streaming tier configured to stream data over a network faster than the storage tier is able to stream the data over the network; receiving a request from a client over the network for a portion of a selected media file; streaming the requested portion of the selected media file to the client from the streaming tier if the selected media file is stored on the streaming tier; and streaming the requested portion of the selected media file to the client from the storage tier if the media file is not stored on the streaming tier.
摘要:
Systems and methods for performing a medical imaging study include acquiring a preliminary scan. A set of local feature candidates is automatically detected from the preliminary scan. The accuracy of each local feature candidate is assessed using multiple combinations of the other local feature candidates and removing a local feature candidate that is assessed to have the lowest accuracy. The assessing and removing steps are repeated until only a predetermined number of local feature candidates remain. A region of interest (ROI) is located from within the preliminary scan based on the remaining predetermined number of local feature candidates. A medical imaging study is performed based on the location of the ROI within the preliminary scan.
摘要:
A method for training a computer system for automatic detection of regions of interest includes receiving patient records. For each of the received patient records a text field and a medical image are identified from within the patient record and the medical image is automatically segmented to identify a structure of interest. The text field is searched for one or more keywords indicative of a particular abnormality associated with the structure of interest. The medical image is added to a grouping representing the particular abnormality when the text field indicates that the patient has the particular abnormality and the medical image is added to a grouping representing the absence of the particular abnormality when the text field does not indicate that the patient has the particular abnormality. The groupings of medical images are used to automatically train a computer system for the subsequent detection of the particular abnormality.