摘要:
Systems and methods for estimating frequency drifts in magnetic resonance signals acquired with a magnetic resonance imaging (“MRI”) system are provided. In one example, the frequency drifts are estimated from phase-correction data that are obtained during an echo-planar imaging (“EPI”), or other multiecho imaging, scan. The systems and methods of the present invention provide for efficiently and accurately computing frequency drift values that can be used for real-time, prospective frequency drift correction.
摘要:
A system and methods for imaging a patient organ. The system includes a MRI imaging apparatus communicating with a memory and processor. The method aligns the organ with a standardized organ, and includes a step of spatially normalizing the standardized organ to the patient organ. The method also provides optimized slices of the standardized organ and translates optimized slices of standardized organ into optimized slices of the patient organ. The method images the patient organ according to the optimized slices of the patient organ.
摘要:
A system and method for medical imaging includes an improvement to the MP-RAGE pulse sequence that enables the readout bandwidth thereof to be matched to that of other pulse sequences used in the same examination without a significant loss in SNR. More specifically, the present invention includes using a multi-echo MP-RAGE pulse sequence in which multiple gradient-recalled NMR signals are acquired at the desired “matching” bandwidth and combining selected ones of the NMR signals to reconstruct an image. By selecting and combining NMR signals acquired at each phase encoding, the SNR of the resulting reconstructed image can be maintained.
摘要:
An fMRI study is conducted using a 2D EPI pulse sequence. A separate blood flow navigator pulse sequence is interleaved with the fMRI data acquisition to monitor blood flow in arteries that feed the brain tissue. Information in the blood flow navigator data is used to reduce errors in the fMRI data due to tissue motion caused by pulsatile blood flow. In one embodiment the blood flow navigator information is used to gate the fMRI acquisition and in another embodiment the information is used to retrospectively correct acquired fMRI data.